The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave dielectric properties of Li2ZnTi3O8 ceramics with the addition of V2O5 were investigated. Based on our research, V2O5 doping effectively promoted the densification of Li2ZnTi3O8 ceramics at about 900°C, without affecting the main crystal phase of the ceramics. Li2ZnTi3O8 ceramics with 0.5 wt% V2O5
References
[1]
Sebastian, M.T. and Jantunen, H. (2008) Low Loss Dielectric Materials for LTCC Applications: A Review. International Materials Reviews, 53, 57-90.
https://doi.org/10.1179/174328008X277524
[2]
George, S., Anjana, P.S., Deepu, V.N., Mohanan, P. and Sebastian, M.T. (2009) Low-Temperature Sintering and Microwave Dielectric Properties of Li2MgSiO4 Ceramics. Journal of the American Ceramic Society, 92, 1244-1249.
[3]
Yuan, L.L. and Bian, J.J. (2009) Microwave Dielectric Properties of the Lithium Compounds with Rock Salt Structure. Ferroelectrics, 387, 123-129.
https://doi.org/10.1080/00150190902966610
[4]
Zhou, D., Wang, H., Pang, L.X., Yao, X. and Wu, X.G. (2008) Microwave Dielectric Characterization of a Li3NbO4 Ceramic and Its Chemical Compatibility with Silver. Journal of the American Ceramic Society, 91, 4115-4117.
[5]
Borisevich, A.Y. and Davies, P.K. (2002) Crystalline Structure and Dielectric Properties of Li1+x-yNb1-x-3yTix+4yO3 M-Phase Solid Solutions. Journal of the American Ceramic Society, 85, 573-578.
[6]
Bahel, S., Singh, R., Kaur, G. and Narang, S.B. (2016) Low Fire M-Phase Lithium Based Dielectric Ceramics for Microwave Applications: A Review (I). Ferroelectrics, 502, 49-56. https://doi.org/10.1080/00150193.2016.1233027
[7]
George, S. and Sebastian, M.T. (2010) Synthesis and Microwave Dielectric Properties of Novel Temperature Stable High Q, Li2ATi3O8 (A=Mg, Zn) Ceramics. Journal of the American Ceramic Society, 93, 2164-2166.
[8]
George, S. and Sebastian, M.T. (2011) Low-Temperature Sintering and Microwave Dielectric Properties of Li2ATi3O8 (A=Mg, Zn) Ceramics. International Journal of Applied Ceramic Technology, 8, 1400-1407.
[9]
Liu, C.-Y., Tsai, B.-G., Weng, M.-H. and Huang, S.-J. (2013) Influence of B2O3 Additive on Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics for LTCC Applications. International Journal of Applied Ceramic Technology, 10, E49-E56.
[10]
Lu, X.-P., Zheng, Y., Zhou, B., Dong, Z.-W. and Cheng, P. (2013) Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics Doped with Bi2O3. Ceramics International, 39, 9829-9833. https://doi.org/10.1016/j.ceramint.2013.05.095
[11]
Li, Y.-X., Li, J.-S., Tang, B., Zhang, S.-R., Li, H., Qin, Z.-J., Chen, H.-T., Yang, H. and Tu, H. (2014) Low Temperature Sintering and Dielectric Properties of Li2ZnTi3O8-TiO2 Composite Ceramics Doped with CaO-B2O3-SiO2 Glass. Journal of Materials Science: Materials in Electronics, 25, 2780-2785.
https://doi.org/10.1007/s10854-014-1942-y
[12]
Chen, G.-H., Liu, J., Li, X.-Q., Xu, H.-R., Jiang, M.-H. and Zhou, C.-R. (2011) Low-Firing Li2ZnTi3O8 Microwave Dielectric Ceramics with BaCu(B2O5) Additive. Bulletin of Materials Science, 34, 1233-1236.
https://doi.org/10.1007/s12034-011-0237-7
[13]
Li, H.-K., Lu, W.-Z. and Lei, W. (2012) Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics Doped with ZnO-B2O3 Frit. Materials Letters, 71, 148-150.
https://doi.org/10.1016/j.matlet.2011.12.048
[14]
Lv, X.-P., Zheng, Y., Zhou, B., Dong, Z.-W. and Cheng, P. (2013) Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics Doped with ZnO-B2O3-SiO2 Glass. Materials Letters, 91, 217-219. https://doi.org/10.1016/j.matlet.2012.09.087
[15]
Zhang, P., Wang, Y., Hua, Y.-B., Han, Y.-M. and Li, L.-X. (2013) Low-Temperature Sintering and Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics. Materials Letters, 107, 351-353. https://doi.org/10.1016/j.matlet.2013.06.041
[16]
He, M. and Zhang, H.-W. (2014) Microwave Properties of Low-Fired Li2ZnTi3O8 Ceramics Doped with CuO-Bi2O3-V2O5. Journal of Alloys and Compounds, 586, 627-632. https://doi.org/10.1016/j.jallcom.2013.10.108
[17]
Zhou, H.-F., Wang, H., Ding, X.-Y. and Yao, X. (2009) Microwave Dielectric Properties of 3Li2O-Nb2O5-3TiO2 Ceramics with Li2O-V2O5 Additions. Journal of Materials Science: Materials in Electronics, 20, 39-43.
https://doi.org/10.1007/s10854-008-9600-x
[18]
Tzou, W.-C., Yang, C.-F., Chen, Y.-C. and Cheng, P.-S. (2000) Improvements in the Sintering and Microwave Properties of BiNbO4 Microwave Ceramics by V2O5 Addition. Journal of the European Ceramic Society, 20, 991-996.
https://doi.org/10.1016/S0955-2219(99)00228-9
[19]
Hakki, B.W. and Coleman, P.D. (1960) A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. IRE Transactions on Microwave Theory and Techniques, 8, 402-410. https://doi.org/10.1109/TMTT.1960.1124749
[20]
Courtney, W.E. (1970) Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators. IEEE Transactions on Microwave Theory and Techniques, 18, 476-485.
https://doi.org/10.1109/TMTT.1970.1127271
[21]
Fang, L., Liu, Q.-W., Tang, Y. and Zhang, H. (2012) Adjustable Dielectric Properties of Li2CuxZn1-xTi3O8 (x=0 to 1) Ceramics with Low Sintering Temperature. Ceramics International, 38, 6431-6434. https://doi.org/10.1016/j.ceramint.2012.05.018