全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microbial Production of Chiral Hydroxy Esters and Their Analogs: Biocatalytic Reduction of Carbonyl Compounds by Actinobacteria, Agromyces and Gordonia Strains

DOI: 10.4236/aer.2019.72002, PP. 15-25

Keywords: Actinobacteria, Stereoselective Reduction, Carbonyl Reductase, Chiral Alcohol

Full-Text   Cite this paper   Add to My Lib

Abstract:

We screened 15 Agromyces strains from the Microbacteriaceae family and 16 Gordonia strains from the Gordoniaceae family to investigate their biocatalytic ability to reduce carbonyl compounds. Two Agromyces strains (A. soli NBRC109063 and A. humatus NBRC109085) and two Gordonia strains (G. hydrophobica NBRC16057 and G. malaquae NBRC108250) grew well in 230 medium. The stereoselective reduction of various carbonyl compounds using these four strains was investigated. We discovered that these strains can reduce aliphatic and aromatic α-keto esters and an aromatic α-keto amide. On the basis of the conversion rate and stereoselectivity of the alcohols produced, G. hydrophobica NBRC16057 is a potential biocatalyst for the stereoselective reduction of α-keto esters and an aromatic α-keto amide to the corresponding chiral alcohols. Our results also suggest that the reduction of ethyl 2-methylacetoacetate by wet G. hydrophobica NBRC16057 cells in the presence of L-glutamate is useful for the production of chiral ethyl 3-hydroxy-2-methylbutanoate.

References

[1]  Faber, K. (2003) Biotransformations in Organic Chemistry. A Textbook. 5th Edition, Springer, Berlin.
[2]  Roberts, S.M., Turner, N.J., Willetts, A.J. and Turner, M.K. (1995) Introduction to Biocatalysis Using Enzymes and Micro-Organisms. Cambridge University Press, New York.
https://doi.org/10.1017/CBO9780511752254
[3]  Ishihara, K., Hamada, H., Hirata, T. and Nakajima, N. (2003) Biotransformation Using Plant Cultured Cells. Journal of Molecular Catalysis, B: Enzymatic, 23, 145-170.
https://doi.org/10.1016/S1381-1177(03)00080-8
[4]  Nakamura, K., Inoue, K., Ushio, K., Oka, S. and Ohno, A. (1988) Stereochemical Control on Yeast Reduction of Keto Esters. Reduction by Immobilized Bakers’ Yeast in Hexane. Journal of Organic Chemistry, 53, 2589-2593.
https://doi.org/10.1021/jo00246a035
[5]  Nakamura, K., Miyai, T., Nagar, A., Oka, S. and Ohno, A. (1989) Stereochemical Control in Microbial Reduction. 9. Diastereoselective Reduction of 2-Alkyl-3- Oxobutanoate with Bakers’ Yeast. Bulletin of the Chemical Society of Japan, 62, 1179-1187.
https://doi.org/10.1246/bcsj.62.1179
[6]  Nakamura, K., Kawai, Y., Kitayama, T., Miyai, T., Ogawa, M., Mikata, Y., Higaki, M. and Ohno, A. (1989) Asymmetric Reduction of Ketones with Microbes. Bulletin of the Institute for Chemical Research, Kyoto University, 67, 157-168.
http://hdl.handle.net/2433/77299
[7]  Kawai, Y., Takanobe, K. and Ohno, A. (1995) Stereochemical Control in Microbial Reduction. XXV. Additives Controlling Diastereoselectivity in a Microbial Reduction of Ethyl 2-Methyl-3-Oxobutanoate. Bulletin of the Chemical Society of Japan, 68, 285-288.
https://doi.org/10.1246/bcsj.68.285
[8]  Ishihara, K., Nishitani, M., Yamaguchi, H., Nakajima, N. and Nakamura, K. (1997) Preparation of Optically Active-Hydroxy Esters: Stereoselective Reduction of α-Keto Esters Using Thermophilic Actinomycetes. Journal of Fermentation and Bioengineering, 84, 268-270.
https://doi.org/10.1016/S0922-338X(97)82068-5
[9]  Ishihara, K., Yamaguchi, H., Hamada, H., Nakajima, N. and Nakamura, K. (2000) Stereocontrolled Reduction of α-Keto Esters with Thermophilic Actinomycete, Streptomyces thermocyaneoviolaceus IFO14271. Journal of Molecular Catalysis, B: Enzymatic, 10, 429-434.
https://doi.org/10.1016/S1381-1177(99)00115-0
[10]  Ishihara, K., Nishimura, M., Nakashima, K., Machii, N., Miyake, F., Nishi, M., Yoshida, M., Masuoka, N. and Nakajima, N. (2010) Preparation of Chiral 2-Chloromandelamide: Stereoselective Reduction of an Aromatic α-Keto Amide with Actinomycete. Biochemistry Insights, 3, 19-24.
https://doi.org/10.4137/BCI.S4231
[11]  Ishihara, K., Fujita, A., Sakiyama, A., Kobayashi, Y., Hori, K., Maruike, K., Masuoka, N., Nakajima, N. and Hamada, H. (2013) Preparation of Chiral Hydroxy Esters Using Actinobacteria: Biocatalyst Activity of Marine-Derived Micromonospora and Streptomyces Strains. Open Journal of Applied Sciences, 3, 116-122.
https://doi.org/10.4236/ojapps.2013.31017
[12]  Ishihara, K., Kondo, A., Kashima, H., Yoshimura, T., Hori, G., Hamada, H. and Masuoka, N. (2015) Biocatalytic Preparation of Chiral Alcohols: Stereoselective Reduction of Carbonyl Compounds Using Two Strains of the Streptomycetaceae Family—Streptacidiphilus and Kitasatospora. International Journal of Current Microbiology and Applied Sciences, 10, 300-309.
https://www.ijcmas.com/vol-4-10/K.%20Ishihara,%20et%20al.pdf
[13]  Ishihara, K., Chiba, A., Ohnishi, K., Ohkawa, A., Mizote, Y., Uesugi, D., Masuoka, N., Nakajima, N. and Hamada, H. (2017) Microbial Preparation of Chiral Alcohols: Stereoselective Reduction of Carbonyl Compounds using Two Genera of the Streptosporangiaceae Family—Streptosporangium and Nonomuraea. International Journal of Current Microbiology and Applied Sciences, 6, 707-717.
https://doi.org/10.20546/ijcmas.2017.608.090
[14]  Ishihara, K., Nagai, H., Takahashi, K., Nishiyama, M. and Nakajima, N. (2011) Stereoselective Reduction of α-Keto Ester and α-Keto Amide with Marine Actinomycetes, Salinispora Strains, as Novel Biocatalysts. Biochemistry Insights, 4, 29-33.
https://doi.org/10.4137/BCI.S7877
[15]  Ishihara, K., Morita, K., Nishimori, Y., Okamoto, S., Hiramatsu, Ohkawa, A., Uesugi, D., Yanagi, M., Hamada, H., Masuoka, N. and Nakajima, N. (2019) Biocatalytic Reduction of Carbonyl Compounds by Actinobacteria from Two Genera of the Micromonosporaceae Family: Actinoplanes and Dactylosporangium. International Journal of Current Microbiology and Applied Sciences, 8, 920-931.
https://doi.org/10.20546/ijcmas.2019.804.106
[16]  Ishihara, K., Yamaguchi, H., Hamada, H., Nakamura, K. and Nakajima, N. (2000) Asymmetric Reduction of α-Keto Esters with Thermophilic Actinomycete: Purification and Characterization of α-Keto Ester Reductase from Streptomyces thermocyaneoviolaceus IFO14271. Journal of Molecular Catalysis, B: Enzymatic, 10, 419-428.
https://doi.org/10.1016/S1381-1177(99)00114-9
[17]  Ishihara, K., Yamaguchi, H., Omori, T., Uemura, T., Nakajima, N. and Esaki, N. (2004) A Novel Zinc-Containing α-Keto Ester Reductase from Actinomycete: An Approach Based on Protein Chemistry and Bioinformatics. Bioscience, Biotechnology, and Biochemistry, 68, 2120-2127.
https://doi.org/10.1271/bbb.68.2120
[18]  Ishihara, K., Kato, C., Yamaguchi, H., Yoshida, M., Ikeda, N., Hamada, H., Masuoka, N. and Nakajima, N. (2008) Stereoselective Reduction of Carbonyl Compounds with Actinomycete: Purification and Characterization of Three α-Keto Ester Reductases from Streptomyces avermitilis. Bioscience, Biotechnology, and Biochemistry, 72, 3249-3257.
https://doi.org/10.1271/bbb.80537
[19]  Mitsuhashi, K. and Yamamoto, H. (2005) Method for Producing Optically Active Mandelic Acid Derivative. Japan Kokai Tokkyo Koho, 2005-295817.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133