全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geomaterials  2019 

NaOH Activation of Raw Soils: Effect of NaOH Content on the Drying Kinetic and Its Modelling

DOI: 10.4236/gm.2019.92005, PP. 55-66

Keywords: Earthen Brick, Stabilization, Alkaline Activation, Modeling, Geopolymer, Drying Kinetics

Full-Text   Cite this paper   Add to My Lib

Abstract:

NaOH activation of soils is an affordable and promising way to improve mechanical properties of earthen bricks. If for well-activated geopolymers, the hard polymeric network limits the influence of water on mechanical properties, for the weakly activated one, as non-calcined raw clayey soils, the influence of water on these properties would be more critical. This work aims to determine the effect of sodium hydroxide concentration on the drying kinetics of bricks made with raw clayey soils, and to model this kinetics. The results show that the drying kinetics is governed by the diffusion of water due to the absence of free water. The drying duration increases linearly with the increasing of NaOH content, while the volumetric shrinkage decreases, probably thanks to the reduction of the material porosity during the formation of the zeolitic structures. Besides, the drying duration is strongly and negatively correlated with the initial drying rate (0.97) and bricks did not show visible cracks. Among the five parametric models tested, the Khazaei’s model is the best in terms of all statistical criteria considered. For all models used, the coefficient of determination is ranged from 0.993 to 0.999, and the evolution of the models’ parameters is in accordance with that of the drying kinetics observed.

References

[1]  UN-Habitat (2008) The State of African Cities: A Framework for Addressing Urban Challenges in Africa. United Nations Human Settlements Programme (UN-HABITAT).
[2]  Van Damme, H. and Houben, H. (2017) Earth Concrete. Stabilization Revisited. Cement and Concrete Research, 114, 90-102.
https://doi.org/10.1016/j.cemconres.2017.02.035
[3]  Delgado, M.C.J. and Guerrero, I.C. (2007) The Selection of Soils for Unstabilised Earth Building: A Normative Review. Construction and Building Materials, 21, 237-251.
https://doi.org/10.1016/j.conbuildmat.2005.08.006
[4]  Houben, H. and Guillaud, H. (1994) Earth Construction: A Comprehensive Guide. Intermediate Technology Publications, London.
[5]  Bryan, A.J. (1988) Criteria for the Suitability of Soil for Cement Stabilization. Building and Environment, 23, 309-319.
https://doi.org/10.1016/0360-1323(88)90037-6
[6]  Bell, F.G. (1996) Lime Stabilization of Clay Minerals and Soils Engineering. Geology, 42, 223-237.
https://doi.org/10.1016/0013-7952(96)00028-2
[7]  Fernández-Pereira, C., de la Casa, J.A., Gómez-Barea, A., Arroyo, F., Leiva, C. and Luna, Y. (2011) Application of Biomass Gasification Fly Ash for Brick Manufacturing. Fuel, 90, 220-232.
https://doi.org/10.1016/j.fuel.2010.07.057
[8]  Shon, C.-S., Saylak, D. and Zollinger, D.G. (2009) Potential Use of Stockpiled Circulating Fluidized Bed Combustion Ashes in Manufacturing Compressed Earth Bricks. Construction and Building Materials, 23, 2062-2071.
https://doi.org/10.1016/j.conbuildmat.2008.08.025
[9]  Sofia, A., Lima, S.A., Humberto, V.H., Almir, S.A. and Neto, F.V. (2012) Analysis of the Mechanical Properties of Compressed Earth Block Masonry Using the Sugarcane Bagasse Ash. Construction and Building Materials, 35, 829-837.
https://doi.org/10.1016/j.conbuildmat.2012.04.127
[10]  MacKenzie, K.J.D., Brew, D.R.M., Fletcher, R.A. and Vagana, R. (2007) Formation of Aluminosilicate Geopolymers from 1:1 Layer-Lattice Minerals Pre-Treated by Various Methods: A Comparative Study. Journal of Materials Science, 42, 4667-4674.
https://doi.org/10.1007/s10853-006-0173-x
[11]  Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P. and Chindaprasirt, P. (2011) NaOH-Activated Ground Fly Ash Geopolymer Cured at Ambient Temperature. Fuel, 90, 2118-2124.
https://doi.org/10.1016/j.fuel.2011.01.018
[12]  Mackenzie, K.J.D. (2009) Utilisation of Non-Thermally Activated Clays in the Production of Geopolymers. In: Provis, J.L. and Van Deventer, J.S.J., Eds., Geopolymers: Structure, Processing and Properties and Industrial Applications, Woodhead Publishing Limited, Cambridge, 294-314.
https://doi.org/10.1533/9781845696382.2.294
[13]  Provis, J.L. (2009) Activating Solutions for Geopolymers. In: Provis, J.L. and Van Deventer, J.S.J., Eds., Geopolymers: Structure, Processing and Properties and Industrial Applications, Woodhead Publishing Limited, Cambridge, 50-71.
https://doi.org/10.1533/9781845696382.2.294
[14]  Panagiotopoulou, Ch., Kontori, E., Perraki, Th. and Kakali, G. (2007) Dissolution of Aluminosilicate Minerals and By-Products in Alkaline Media. Journal of Materials Science, 42, 2967-2973.
https://doi.org/10.1007/s10853-006-0531-8
[15]  Rattanasak, U. and Chindaprasirt, P. (2009) Influence of NaOH Solution on the Synthesis of Fly Ash Geopolymer. Mineral Engineering, 22, 1073-1078.
https://doi.org/10.1016/j.mineng.2009.03.022
[16]  Kim, B., Yi, C. and Kang, K. (2014) Development of Alkali-Activated Binder Using Hwangtoh without Calcination. Construction and Building Materials, 58, 206-213.
https://doi.org/10.1016/j.conbuildmat.2014.02.003
[17]  Diop, M.B. and Michael, G.W. (2008) Sodium Silicate Activated Clay Brick. Bulletin of Engineering Geology and the Environment, 67, 499-505.
https://doi.org/10.1007/s10064-008-0160-3
[18]  Ngoulou, M., Elenga, R.G., Ahouet, L., Bouyila, S. and Konda, S. (2019) Modeling the Drying Kinetics of Earth Bricks Stabilized with Cassava Flour Gel and Amylopectin. Geomaterials, 9, 40-53.
https://doi.org/10.4236/gm.2019.91004
[19]  NF P94-056 (1996) Soil: Investigation and Testing—Granulometric Analysis—Dry Sieving Method Washing. Association Francaise de Normalisation (AFNOR), Paris.
http://www.afnor.fr
[20]  NF P94-057 (1992) Analyse granulometrique des sols. Methode par sedimentation. Association Francaise de Normalisation (AFNOR), Paris.
http://www.afnor.fr
[21]  NF P94-051 (1993) Soils: Investigation and Testing—Determination of Atterberg Limits—Liquid Limit Test Using Casagrande Apparatus—Plastic Limit Test on Rolled Thread. Association Francaise de Normalisation (AFNOR), Paris.
http://www.afnor.fr
[22]  NF P94-093 (1999) Soils: Investigations and Testing—Determination of Compaction Characteristics of Soil—Standard Proctor Test—Modified Proctor Test. Association Francaise de Normalisation (AFNOR), Paris.
http://www.afnor.fr
[23]  Pauwels, J.M., Van Rants, E. and Verloom, M.A. (1992) Mannuel de laboratoire de pédologie Méthode d’analyse des sols et plantes; équipements, gestion des stocks, de verrerie et de produits chimiques. Place du champ de Mars 5, 1050 Bruxelles, Royaume de Belgique, 33-34.
[24]  Avrami, M. (1940) Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. The Journal of Chemical Physics, 8, 212-224.
https://doi.org/10.1063/1.1750631
[25]  Erbay, Z. and Icier, F. (2009) A Review of Thin Layer Drying of Foods: Theory, Modeling and Experimental Results. Critical Reviews in Food Science and Nutrition, 505, 441-464.
https://doi.org/10.1080/10408390802437063
[26]  Crank, J. (1975) The Mathematics of Diffusion. Oxford University Press, Oxford.
[27]  Khazaei, J. and Daneshmandi, S. (2007) Modeling of Thin-Layer Drying Kinetics of Sesame Seeds: Mathematical and Neural Networks Modeling. International Agrophysics, 21, 335-348.
[28]  Elenga, R.G., Massamba, D., Niéré, R.R., Goma Maniongui, J. and Dirras, G.F. (2013) Convective and Microwave Dryings of Raffia Fruit: Modeling and Effects on Color and Hardness. Research Journal of Applied Sciences, Engineering and Technology, 6, 2715-2723.
https://doi.org/10.19026/rjaset.6.3776
[29]  Peleg, M. (1988) An Empirical Model for Description of Moisture Sorption Curves. Journal of Food Science, 53, 1216-1217.
https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
[30]  Elenga, R.G., Dirras, G.F., Goma Maniongui, J. and Mabiala, B. (2011) Drying of Raffia Fiber. BioRessources, 6, 4135-4144.
[31]  Li, Y., et al. (2017) A Unified Expression for Grain Size Distribution of Soils. Geoderma, 288, 105-119.
https://doi.org/10.1016/j.geoderma.2016.11.011
[32]  Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A. (2012) A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers. Construction and Building Materials, 30, 100-116.
https://doi.org/10.1016/j.conbuildmat.2011.11.045
[33]  Yetgin, S., Cavdar, O. and Cavdar, A. (2008) The Effects of the Fiber Contents on the Mechanic Properties of the Adobes. Construction and Building Materials, 22, 222-227.
https://doi.org/10.1016/j.conbuildmat.2006.08.022
[34]  Bahar, R., Benazzoug, M. and Kenai, S. (2004) Performance of Compacted Cement-Stabilised Soil. Cement & Concrete Composites, 26, 811-820.
https://doi.org/10.1016/j.cemconcomp.2004.01.003
[35]  Elenga, R.G., Mabiala, B., Ahouet, L., Goma-Maniongui, J. and Dirras, G.F. (2011) Characterization of Clayey Soils from Congo and Physical Properties of Their Compressed Earth Blocks Reinforced with Post-Consumer Plastic Wastes. Geomaterials, 1, 88-94.
https://doi.org/10.4236/gm.2011.13013
[36]  Millogo, Y., Hajjaji, M. and Ouedraogo, R. (2008) Microstructure and Physical Properties of Lime-Clayey Adobe Bricks. Construction and Building Materials, 22, 2386-2392.
https://doi.org/10.1016/j.conbuildmat.2007.09.002

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413