全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanosized Au Catalysts Supported on Mg(OH)2-CeO2 for Preferential Oxidation of CO in Hydrogen Stream

DOI: 10.4236/mrc.2019.82002, PP. 11-23

Keywords: Gold, CO Oxidation, Hydrogen Energy, Cerium Oxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) is a promising method to remove CO from a hydrogen-containing gas mixture. Nanosized gold catalyst supported on CeO2 and modified with Mg(OH)2 was used for preferential oxidation of carbon monoxide in hydrogen-rich stream in this study. Mg(OH)2 was added on CeO2 by incipient-wetness impregnation. Au was loaded on Mg(OH)2-CeO2 by deposition-precipitation method. PROX reaction was carried out in a continuous flow, fixed bed reactor. CO/O2 feed ratio was fixed at 1 to magnify the difference of various catalysts. The catalysts were characterized by N2 sorption, TEM, HR-TEM and XPS. Mg(OH)2 formed a thin layer on the surface of CeO2. CeO2 was in the crystalline phase and Mg(OH)2 was amorphous. Au particles were homogeneously dispersed on the support with a size of 2 - 5 nm. Using CeO2 as

References

[1]  Chen, Y.W. and Sasirekha, N.S. (2014) Preferential Oxidation of CO in H2 Stream over Gold Catalysts. In: Ma, Z. and Dai, S., Eds., Heterogeneous Gold Catalysts and Catalysis, Royal Society of Chemistry, Cambridge, RSC Catalysis Series, No. 18, 73-103.
[2]  Maciel, C.G., Silva, T.F., Hirooka, M.I., Belgacem, M.N. and Assaf, J.M. (2012) Effect of Nature of Ceria Support in CuO/CeO2 Catalyst for PROX-Co Reaction. Fuel, 97, 245-252.
https://doi.org/10.1016/j.fuel.2012.02.004
[3]  Ayastuy, J.L., Gamboa, N.K., González-Marcos, M.P. and Gutiérrez-Ortiz, M.A. (2011) CuO/CeO2 Washcoated Ceramic Monoliths for CO-PROX Reaction. Chemical Engineering Journal, 171, 224-231.
https://doi.org/10.1016/j.cej.2011.03.006
[4]  Yang, Y.F., Sangeetha, P. and Chen, Y.W. (2009) Au/FeOx-TiO2 Catalysts for the Preferential Oxidation of CO in H2 Stream. Industrial & Engineering Chemistry Research, 48, 10402-10407.
https://doi.org/10.1021/ie900806r
[5]  Sangeetha, P., Zhao, B. and Chen, Y.W. (2010) Au/CuOx-TiO2 Catalysts for Preferential Oxidation of CO in Hydrogen Stream. Industrial & Engineering Chemistry Research, 49, 2096-2102.
https://doi.org/10.1021/ie901233e
[6]  Chen, Y.W., Chen, H.J. and Lee, D.S. (2012) Au/Co3O4-TiO2 Catalysts for Preferential Oxidation of CO in H2 Stream. Journal of Molecular Catalysis A: Chemical, 363-364, 470-480.
https://doi.org/10.1016/j.molcata.2012.07.027
[7]  Chen, Y.W., Lee, D.S. and Chen, H.J. (2012) Preferential Oxidation of CO in H2 Stream on Au/ZnO-TiO2 Catalysts. International Journal of Hydrogen Energy, 37, 15140-15155.
https://doi.org/10.1016/j.ijhydene.2012.08.003
[8]  Duh, F.C., Lee, D.S. and Chen, Y.W. (2013) Au/CuOx-TiO2 Catalysts for CO Oxidation at Low Temperature. Modern Research in Catalysis, 2, 1-8.
https://doi.org/10.4236/mrc.2013.21001
[9]  Lee, D.S. and Chen, Y.W. (2013) Synthesis of Au/CoOx-TiO2 Catalysts and Its Application for Low Temperature CO Oxidation. Journal of Catalysts, 2013, Article ID: 586364.
https://doi.org/10.1155/2013/586364
[10]  Sasirekha, N., Sangeetha, P. and Chen, Y.W. (2014) Bimetallic Au-Ag/CeO2 Catalysts for Preferential Oxidation of CO in Hydrogen-Rich Stream: Effect of Calcination Temperature. Journal of Physical Chemistry C, 118, 15226-15233.
https://doi.org/10.1021/jp500102g
[11]  Grisel, R.J.H. and Nieuwenhuys, B.E. (2001) Selective Oxidation of CO, over Supported Au Catalysts. Journal of Catalysis, 199, 48-59.
https://doi.org/10.1006/jcat.2000.3121
[12]  Grisel, R.J.H., Slyconish, J.J. and Nieuwenhuys, B.E. (2001) Oxidation Reactions over Multi-Component Catalysts: Low-Temperature CO Oxidation and the Total Oxidation of CH4. Topics in Catalysis, 16-17, 425-431.
https://doi.org/10.1023/A:1016694022941
[13]  Grisel, R.J.H., Weststrate, C.J., Goossens, A., Crajé, M.W.J., van der Kraan, A.M. and Nieuwenhuys, B.E. (2002) Oxidation of CO over Au/MOx/Al2O3 Multi-Component Catalysts in a Hydrogen-Rich Environment. Catalysis Today, 72, 123-132.
https://doi.org/10.1016/S0920-5861(01)00486-2
[14]  Tompos, A., Hegedus, M., Margitfalvi, J.L., Szabo, E.G. and Vegvari, L. (2008) Multicomponent Au/MgO Catalysts Designed for Selective Oxidation of Carbon Monoxide: Application of a Combinatorial Approach. Applied Catalysis A: General, 334, 348-356.
https://doi.org/10.1016/j.apcata.2007.10.022
[15]  Yang, Z., Wu, R., Zhang, Q. and Goodman, D.W. (2002) Adsorption of Au on an O-Deficient MgO(001) Surface. Physical Review B, 65, 155407-155411.
https://doi.org/10.1103/PhysRevB.65.155407
[16]  Tyo1, E.C. and Vajda, S. (2015) Catalysis by Clusters with Precise Numbers of Atoms. Nature Nanotechnology, 10, 577-588.
https://doi.org/10.1038/nnano.2015.140
[17]  Wang, Z., Xu, C. and Wang, H. (2014) A Facile Preparation of Highly Active Au/MgO Catalysts for Aerobic Oxidation of Benzyl Alcohol. Catalysis Letters, 144, 1919-1925.
https://doi.org/10.1007/s10562-014-1344-z
[18]  Chang, L.H., Chen, Y.W. and Sasirekha, N. (2008) Preferential Oxidation of Carbon Monoxide in Hydrogen Stream over Au/MgOx-TiO2 Catalysts. Industrial & Engineering Chemistry Research, 47, 4098-4105.
https://doi.org/10.1021/ie071590d
[19]  Molina, L.M. and Hammer, B. (2004) Theoretical Study of CO Oxidation on Au Nanoparticles Supported by MgO(100). Physical Review B, 69, 155424-155445.
https://doi.org/10.1103/PhysRevB.69.155424
[20]  Haruta, M. (2004) Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation. Journal of New Materials for Electrochemical Systems, 7, 163-172.
https://doi.org/10.1002/chin.200448226
[21]  Min, B.K. and Friend, M. (2007) Heterogeneous Gold-Based Catalysis for Green Chemistry: Low-Temperature CO Oxidation and Propene Oxidation. Chemical Reviews, 107, 2709-2724.
https://doi.org/10.1021/cr050954d
[22]  Thompson, D.T. (2007) Using Gold Nanoparticles for Catalysis. Topics in Catalysis, 44, 331.
https://doi.org/10.1007/s11244-007-0307-7
[23]  Chen, M. and Goodman, D.W. (2008) Promotional Effects of Au in Pd-Au Catalysts for Vinyl Acetate Synthesis. Chinese Journal of Catalysis, 29, 1178-1186.
https://doi.org/10.1016/S1872-2067(09)60021-8
[24]  Chan, S.C. and Barteau, M.A. (2005) Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir, 21, 5588- 5595.
https://doi.org/10.1021/la046887k
[25]  Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F. and Haruta, M. (2002) Performance of Au/TiO2 Catalyst under Ambient Conditions. Catalysis Today, 72, 89-94.
https://doi.org/10.1016/S0920-5861(01)00481-3
[26]  Pattrick, G.E., van der Lingen, C.W., Corti, R.J., Holliday, H. and Thompson, D.T. (2004) The Potential for Use of Gold in Automotive Pollution Control Technologies: A Short Review. Topics in Catalysis, 30, 273-279.
https://doi.org/10.1023/B:TOCA.0000029762.14168.d8
[27]  Hartadi, Y., Behm, R.J. and Widmann, D. (2016) Competition of CO and H2 for Active Oxygen Species during the Preferential CO Oxidation (PROX) on Au/TiO2 Catalysts. Catalysts, 6, 21-34.
https://doi.org/10.3390/catal6020021
[28]  Lin, X., Yang, B., Benia, H.M., Myrach, P., Yulikov, M., Aumer, A., Brown, M.A., Sterrer, M., Bondarchuk, O., Kieseritzky, E., Rocker, J., Risse, T., Gao, H.J., Nilius, N. and Freund, H.J. (2010) Charge-Mediated Adsorption Behavior of CO on MgO-Supported Au Clusters. Journal of the American Chemical Society, 132, 7745-7754.
https://doi.org/10.1021/ja101188x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133