全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prediction of Soil Salinity Using Remote Sensing Tools and Linear Regression Model

DOI: 10.4236/ars.2019.83005, PP. 77-88

Keywords: Remote Sensing, Spectral Indices, Soil Salinity, Electrical Conductivity, Salinity Index, Regression Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil salinity is one of the most damaging environmental problems worldwide, especially in arid and semi-arid regions. Multispectral data Sentinel_2 are used to study saline soils in southern Tunisia. 34 soil samples were collected for ground truth data in the investigated region. A moderate correlation was found between electrical conductivity and the spectral indices from SWIR. Different spectral indices were used from original bands of Sentinel_2 data. Statistical correlation between ground measurements of Electrical Conductivity (EC), spectral indices and Sentinel_2 original bands showed that SWIR bands (b11 and b12) and the salinity index SI have the highest correlation with EC. Based on these results and combining these remotely sensed variables into a regression analysis model yielded a coefficient of determination R2 = 0.48 and an RMSE = 4.8 dS/m.

References

[1]  Department of Primary Industries (1996) Victorian Resources Online.
http://www.dpi.vic.gov.au
[2]  Lu, D. and Weng, Q. (2005) Urban Classification Using Full Spectral Information of LANDSAT ETM+ Imagery in Marion County, Indiana. Photogrammetric Engineering and Remote Sensing, 71, 1275.
https://doi.org/10.14358/PERS.71.11.1275
[3]  Weng, Y., Gong, P. and Zhu, Z. (2008) Reflectance Spectroscopy for the Assessment of Soil Salt Content in Soils of the Yellow River Delta of China. International Journal of Remote Sensing, 29, 5511-5531.
https://doi.org/10.1080/01431160801930248
[4]  Gueddari, M., Monnin, C., Perret, D., Fritz, B. and Tardy, Y. (1983) Geochemistry of Brines of the Chott el Jerid in Southern Tunisia—Application of Pitzers Equations. Chemical Geology, 39, 165.
https://doi.org/10.1016/0009-2541(83)90078-5
[5]  Congalton, R. and Green, K. (2009) Assessing the Accuracy of Remote Sensed Data: Principles and Practices. 2nd Edition, CRC/Lewis Press, Boca Raton, 137.
https://doi.org/10.1201/9781420055139
[6]  Triki, I., Trabelsi, N., Zairi, M. and Ben Dhia, H. (2013) Multivariate Statistical and Geostatistical Techniques for Assessing Groundwater Salinization in Sfax, a Coastal Region of Eastern Tunisia. Desalination and Water Treatment, 52, 1980-1989.
https://doi.org/10.1080/19443994.2013.803937
[7]  Tóth, T., Pasztor, L., Kabos, S. and Kuti, L. (2002) Statistical Prediction of the Presence of Salt-Affected Soils by Using Digitalized Hydrogeological Maps. Arid Land Research and Management, 16, 55-68.
https://doi.org/10.1080/153249802753365322
[8]  Shrestha, D., Margateb, D.E., van der Meer, F. and Anhc, H.V. (2005) Analysis and Classification of Hyperspectral Data for Mapping Land Degradation: An Application in Southern Spain. International Journal of Applied Earth Observation and Geoinformation, 7, 85.
https://doi.org/10.1016/j.jag.2005.01.001
[9]  Wang, H., Wang, J. and Liu, G. (2007) Spatial Regression Analysis on the Variation of Soil Salinity in the Yellow River Delta. Proceedings of the SPIE 6753, Geoinformatics 2007: Geospatial Information Science, Nanjing, 10 June 2007, 67531U.
https://doi.org/10.1117/12.761911
[10]  Jobson, J.D. (1999) Applied Multivariate Data Analysis: Volume 1: Regression and Experimental Design. Springer Verlag, New York.
[11]  Metternicht, G. and Zinck, A. (2008) Remote Sensing of Soil Salinization: Impact on Land Management. CRC Press, Boca Raton, 377.
https://doi.org/10.1201/9781420065039
[12]  Farifteh, J., van der Meer, F., Atzberger, C. and Carranza, E. (2007) Quantitative Analysis of Salt-Affected Soil Reflectance Spectra: A Comparison of Two Adaptive Methods (PLSR and ANN). Remote Sensing of Environment, 110, 59-78.
https://doi.org/10.1016/j.rse.2007.02.005
[13]  Fethi, B., Magnus, P., Ronny, B. and Akissa, B. (2010) Estimating Soil Salinity over a Shallow Saline Water Table in Semiarid Tunisia. The Open Hydrology Journal, 4, 91-101.
https://doi.org/10.2174/1874378101004010091
[14]  Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F. and Malone, B. (2014) Digital Mapping of Soil Salinity in Ardakan Region, Central Iran. Geoderma, 213, 15-28.
https://doi.org/10.1016/j.geoderma.2013.07.020
[15]  Malins, D. and Metternicht, G. (2006) Assessing the Spatial Extent of Dryland Salinity through Fuzzy Modeling. Ecological Modelling, 193, 387-411.
https://doi.org/10.1016/j.ecolmodel.2005.08.044
[16]  Douaik, A., van Meirvenne, M., Toth, T. and Serre, M. (2004) Space-Time Mapping of Soil Salinity Using Probabilistic Bayesian Maximum Entropy. Stochastic Environmental Research and Risk Assessment, 18, 219-227.
https://doi.org/10.1007/s00477-004-0177-5
[17]  Triantafilis, J., Odeh, I. and McBratney, A. (2001) Five Geostatistical Models to Predict Soil Salinity from Electromagnetic Induction Data across Irrigated Cotton. Soil Science Society of America Journal, 65, 869-878.
https://doi.org/10.2136/sssaj2001.653869x
[18]  Fan, X., Pedroli, B., Liu, G., Liu, Q., Liu, H. and Shu, L. (2012) Soil Salinity Development in the Yellow River Delta in Relation to Groundwater Dynamics. Land Degradation & Development, 23, 175-189. https://doi.org/10.1002/ldr.1071
[19]  Eldeiry, A.A. and Garcia, L.A. (2008) Detecting Soil Salinity in Alfalfa Fields Using Spatial Modeling and Remote Sensing. Soil Science Society of America Journal, 72, 201-211.
https://doi.org/10.2136/sssaj2007.0013
[20]  McBratney, A., Santos, M.D.L.M. and Minasny, B. (2003) On Digital Soil Mapping. Geoderma, 117, 3-52.
https://doi.org/10.1016/S0016-7061(03)00223-4
[21]  Scull, P., Franklin, J., Chadwick, O. and McArthur, D. (2003) Predictive Soil Mapping: A Review. Progress in Physical Geography, 27, 171-197.
https://doi.org/10.1191/0309133303pp366ra
[22]  Lesch, S.M., Strauss, D.J. and Rhoades, J.D. (1995) Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 1. Statistical Prediction Models: A Comparison of Multiple Linear Regression and Cokriging. Water Resources Research, 31, 373-386.
https://doi.org/10.1029/94WR02179
[23]  Thomas, D.S.G. and Middleton, N.J. (1993) Salinization: New Perspectives on a Major Desertification Issue. Journal of Arid Environments, 24, 95.
https://doi.org/10.1006/jare.1993.1008
[24]  Douaoui, A.E.K., Nicolas, H. and Walter, C. (2006) Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data. Geoderma, 134, 217-230.
https://doi.org/10.1016/j.geoderma.2005.10.009
[25]  Judkins, G. and Myint, S. (2012) Spatial Variation of Soil Salinity in the Mexicali Valley, Mexico: Application of a Practical Method for Agricultural Monitoring. Environmental Management, 50, 478-489.
https://doi.org/10.1007/s00267-012-9889-3
[26]  Qu, Y.H., Jiao, S.O. and Lin, X.D. (2008) A Partial Least Square Regression Method to Quantitatively Retrieve Soil Salinity Using Hyper-Spectral Reflectance Data. Proceedings of the SPIE 7147, Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, Guangzhou, 31 October 2008, 71471H.
[27]  Shamsi, F.R.S., Sanaz, Z. and Abtahi, A.S. (2013) Soil Salinity Characteristics Using Moderate Resolution Imaging Spectroradiometer (MODIS) Images and Statistical Analysis. Archives of Agronomy and Soil Science, 59, 471-489.
https://doi.org/10.1080/03650340.2011.646996
[28]  Mehrjardi, R.T., Mahmoodi, S.H., Taze, M. and Sahebjalal, E. (2008) Accuracy Assessment of Soil Salinity Map in Yazd-Ardakan Plain, Central Iran, Based on Landsat ETM+ Imagery. American-Eurasian Journal of Agricultural & Environmental Sciences, 3, 708-712.
[29]  Tajgardan, T., Shataee, S. and Ayoubi, S. (2007) Spatial Prediction of Soil Salinity in the Arid Zones Using ASTER Data, Case study: North of Ag Ghala, Golestan Province, Iran. Proceedings of Asian Conference on Remote Sensing, Kuala Lumpur, 12-16 November 2007.
[30]  Afework, M. (2009) Analysis and Mapping of Soil Salinity Levels in Metehara Sugarcane Estate Irrigation Farm Using Different Models. Ms.C. Thesis, Addis Ababa University, Addis Ababa.
[31]  Bouaziz, M., Matschullat, J. and Gloaguen, R. (2011) Improved Remote Sensing Detection of Soil Salinity from a Semi-Arid Climate in Northeast Brazil. Comptes Rendus Geoscience, 343, 795-803.
https://doi.org/10.1016/j.crte.2011.09.003
[32]  Szabolcs, I. (1989) Salt Affected Soils. CRC Press, Boca Raton.
[33]  Wu, T.N., Huang, Y.C., Lee, M.S. and Kao, C.M. (2005) Source Identification of Groundwater Pollution with the Aid of Multivariate Statistical Analysis. Water Science and Technology: Water Supply, 5, 281-288.
https://doi.org/10.2166/ws.2005.0074
[34]  Dutkiewicz, A., Lewis, M. and Ostendorf, B. (2009) Evaluation and Comparison of Hyperspectral Imagery for Mapping Surface Symptoms of Dry Land Salinity. International Journal of Remote Sensing, 30, 693.
https://doi.org/10.1080/01431160802392612
[35]  Dehaan, R.L. and Taylor, G.R. (2002) Field-Derived Spectra of Salinized Soils and Vegetation as Indicators of Irrigation-Induced Soil Salinization. Remote Sensing of Environment, 80, 406.
https://doi.org/10.1016/S0034-4257(01)00321-2
[36]  Liu, C.-W., Lin, K.-H. and Kuo, Y.-M. (2003) Application of Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan. The Science of the Total Environment, 313, 77-89.
https://doi.org/10.1016/S0048-9697(02)00683-6

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133