全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structures, Lipophilicity, Dipole Moments, Acidity and Spectroscopic Properties of Non-Steroidal Anti-Inflammatory Drugs Diclofenac, Bromfenac and Amfenac: A Theoretical Study

DOI: 10.4236/cc.2019.74007, PP. 95-105

Keywords: Diclofenac, Bromfenac, Amfenac, DFT, Spectroscopic Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work is a contribution of theoretical chemistry to the classification of some non-steroidal anti-inflammatory drugs (NSAIDs). Indeed, research on the efficacy of NSAIDs has shown that no NSAID is recognized as the most efficient anti-inflammatory drug. We have made a theoretical study of diclofenac, bromfenac and amfenac, in order to compare their efficacy from some physicochemical properties. To do this, we used the DFT and TD-DTF methods at the B3LYP/6-311+G(d, p) level theory. The lipophilicity study shows that diclofenac and bromfenac are very lipophilic. Acidity study shows that diclofenac is more acid than bromfenac and amfenac. The results from molecular orbital and the TD-DFT calculations reveal that for the three NSAIDs, the lowest energy transition is due to the excitation from HOMO to LUMO. The absorption energy corresponding to H→L transition is comparable with the energy gap value. Our findings have shown that bromfenac is more reactive than amfenac, which is more reactive than diclofenac.

References

[1]  Jubert, A., Legarto, M.L., Massa, N.E., Tevez, L.L. and Okulik, N.B. (2006) Vibrational and Theoretical Studies of Non-Steroidal Anti-Inflammatory Drugs Ibuprofen [2-(4-isobutylphenyl)propionic acid]; Naproxen [6-methoxy-a-methyl-2-naphthalene acetic acid] and Tolmetin Acids [1-methyl-5-(4-methylbenzoyl) 1H-pyrrole-2-acetic acid]. Journal of Molecular Structure, 783, 34-51.
[2]  Darinee, S.-T., Prasat, K. and Supa, H.A. (2009) Roles of Key Residues Specific to Cyclooxygenase II: An ONIOM Study. Monatshefte für Chemie, 140, 1533-1541.
https://doi.org/10.1007/s00706-009-0194-7
[3]  Waterbury, L., Kunysz, E.A. and Beuerman, R. (1987) Effects of Steroidal and Nonsteroidal Anti-Inflammatory Agents on Corneal Wound Healing. Journal of Ocular Pharmacology and Therapeutics, 3, 43-54.
https://doi.org/10.1089/jop.1987.3.43
[4]  Schalnus, R. (2003) Topical Nonsteroidal Anti-Inflammatory Therapy in Ophthalmology. Ophthalmologica, 217, 89-98.
https://doi.org/10.1159/000068563
[5]  Donnenfeld, E.D., Holland, E.J., Stewart, R.H., Gow, J.A., Grillone, L.R., Bromfenac Ophthalmic Solution 0.09% (Xibrom) Study Group (2007) Bromfenac Ophthalmic Solution 0.09% (Xibrom) for Postoperative Ocular Pain and Inflammation. Ophthalmology, 114, 1653-1662.
https://doi.org/10.1016/j.ophtha.2006.12.029
[6]  Uchio, E., Itoh, Y. and Kadonosono, K. (2007) Topical Bromfenac Sodium for Long-Term Management of Vernal Keratoconjunctivitis. Ophthalmologica, 221, 153-158.
https://doi.org/10.1159/000099294
[7]  Telander, D.G. (2011) Inflammation and Age-Related Macular Degeneration (AMD). Seminars in Ophthalmology, 26, 192-197.
https://doi.org/10.3109/08820538.2011.570849
[8]  Jones, J. and Francis, P. (2009) Ophthalmic Utility of Topical Bromfenac, a Twice-Daily Nonsteroidal Anti-Inflammatory Agent. Expert Opinion on Pharmacotherapy, 10, 2379-2385.
https://doi.org/10.1517/14656560903188425
[9]  Cho, H., Wolf, K.J. and Wolf, E.J. (2009) Management of Ocular Inflammation and Pain Following Cataract Surgery: Focus on Bromfenac Ophthalmic Solution. Clinical Ophthalmology, 3, 199-210.
https://doi.org/10.2147/OPTH.S4806
[10]  Yoshinaga, N., Arimura, N., Otsuka, H., Kawahara, K. and Hashiguchi, T. (2011) NSAIDs Inhibit Neovascularization of Choroid through HO-1-Dependent Pathway. Laboratory Investigation, 91, 1277 1290.
https://doi.org/10.1038/labinvest.2011.101
[11]  Gomi, F., Sawa, M., Tsujikawa, M. and Nishida, K. (2012) Topical Bromfenac as an Adjunctive Treatment with Intravitreal Ranibizumab for Exudative Age-Related Macular Degeneration. Retina, 32, 1804-1810.
https://doi.org/10.1097/IAE.0b013e31825be87f
[12]  Miyake, K., Ogawa, T., Tajika, T., Gow, J.A. and McNamara, T.R. (2008) Ocular Pharmacokinetics of a Single Dose of Bromfenac Sodium Ophthalmic Solution 0.1% in Human Aqueous Humor. Journal of Ocular Pharmacology and Therapeutics, 24, 573-578.
https://doi.org/10.1089/jop.2007.0132
[13]  Baklayan, G.A., Patterson, H.M., Song, C.K., Gow, J.A. and McNamara, T.R. (2008) 24-Hour Evaluation of the Ocular Distribution of (14)C-Labeled Bromfenac Following Topical Instillation into the Eyes of New Zealand White Rabbits. Journal of Ocular Pharmacology and Therapeutics, 24, 392-398.
https://doi.org/10.1089/jop.2007.0082
[14]  Kida, T., Kozai, S., Takahashi, H., Isaka, M. and Tokushige, H. (2014) Pharmacokinetics and Efficacy of Topically Applied Nonsteroidal Anti-Inflammatory Drugs in Retinochoroidal Tissues in Rabbits. PLoS ONE, 9, e96481.
[15]  Becke, A.D. (1998) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098
[16]  Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[17]  Casida, M.E. (1995) Recent Advances in Density Functional Methods, Part I. World Scientific, Singapore.
[18]  Gross, E.K.U., Dobson, J.F. and Petersilka, M. (1996) Density Functional Theory II. Springer, Heidelberg, 181.
[19]  Miertus, S., Scrocco, E. and Tomasi, J. (1981) Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab Initio Molecular Potentials for the Prevision of Solvent Effects. The Journal of Chemical Physics, 55, 117-129.
https://doi.org/10.1016/0301-0104(81)85090-2
[20]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2009) Gaussian09, Revision A.02. Gaussian, Inc., Wallingford.
[21]  Remko, M., Remková, A. and Broer, R. (2016) Theoretical Study of Molecular Structure and Physicochemical Properties of Novel Factor Xa Inhibitors and Dual Factor Xa and Factor IIa Inhibitors. Molecules, 21, 185.
https://doi.org/10.3390/molecules21020185
[22]  Remko, M., Broer, R. and Remková, A. (2014) A Comparative Study of the Molecular Structure, Lipophilicity, Solubility, Acidity, Absorption and Polar Surface Area of Coumarinic Anticoagulants and Direct Thrombin Inhibitors. RSC Advances, 4, 8072-8084.
https://doi.org/10.1039/C3RA42347F
[23]  Remko, M., Remková, A. and Broer, R. (2016) A Comparative Study of Molecular Structure, pKa, Lipophilicity, Solubility, Absorption and Polar Surface Area of Some Antiplatelet Drugs. International Journal of Molecular Sciences, 17, 388.
https://doi.org/10.3390/ijms17030388
[24]  Sorenson, J.R. (1976) Copper Chelates as Possible Active Forms of the Antiarthritic Agents. Journal of Medicinal Chemistry, 19, 135-148.
https://doi.org/10.1021/jm00223a024
[25]  Sorensen, J.R. (1982) Metal Ions in Biological Systems. Marcel Dekker, New York, Vol. 14, 77-124.
[26]  Milan, R. (2003) Theoretical Study of Molecular Structure and Gas-Phase Acidity of Some Biologically Active Sulfonamides. The Journal of Physical Chemistry A, 107, 720-725.
https://doi.org/10.1021/jp026980m
[27]  Lim, C., Bashford, D. and Karplus, M. (1991) Absolute pKa Calculations with Continuum Dielectric Methods. The Journal of Physical Chemistry, 95, 5610-5620.
https://doi.org/10.1021/j100167a045
[28]  Topol, I.A., Tawa, G.J., Burt, S.K. and Rashin, A.A. (1997) Calculation of Absolute and Relative Acidities of Substituted Imidazoles in Aqueous Solvent. The Journal of Physical Chemistry A, 101, 10075-10081.
https://doi.org/10.1021/jp9723168
[29]  Assoma, A.B., Bede, A.L., Kone, M. and N’Guessan, Y.T. (2010) Theoretical Study of Stability, Tautomerism, Equilibrium Constants (pkT), Activation Energies and Acidity of 6-Thioxanthine in Gas and Aqueous Phase by the Ab Initio Method and Functional Density Theory Calculations. European Journal of Scientific Research, 44, 337-354.
[30]  Assoma, A.B., Bede, A.L., Yapo, K.D., N’Guessan, B.R. and Bamba, E.-H.S. (2018) étude Théorique de la Stabilité, de la Tautomérie et de L’acidité de la 2,6-Dithioxanthine Par la Méthode de la Théorie de la Fonctionnelle de Densité. European Journal of Scientific Research, 149, 148-152.
[31]  Assoma, B.A., Bede, L.A., N’Guessan, R.B., Kone, S., Bamba, S.E. and N’Guessan, T.Y. (2018) Stability, Tautomerism and Acidity of Xanthine by the Density Functional Theory (DFT). Journal of Current Chemical and Pharmaceutical Sciences, 8, 114.
[32]  Assoma, A.B., Kone, M., Alao, L.L, Bede, A.L., Kone, S., N’Guessan, B.R., Bamba, E.-H.S. and N’guessan, Y.T. (2019) Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases. International Journal of Computational and Theoretical Chemistry, 7, 49-55.
[33]  Mohd, S., AlFaify, S., Haider, A. and Shabbir, M. (2015) First Principal Studies of Spectroscopic (IR and Raman, UV-Visible), Molecular Structure, Linear and Nonlinear Optical Properties of L-Arginine p-Nitrobenzoate Monohydrate (LANB): A New Non-Centrosymmetric Material. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147, 84-92.
https://doi.org/10.1016/j.saa.2015.02.111
[34]  Bede, A.L., Assoma, A.B., Yapo, K.D., Kone, M.G.-R., Kone, S., Kone, M., N’Guessan, B.R. and Bamba, E.-H.S. (2018) Theoretical Study by Density Functional Theory Method (DFT) of Stability, Tautomerism, Reactivity and Prediction of Acidity of Quinolein-4-One Derivatives. Computational Chemistry, 6, 57-70.
https://doi.org/10.4236/cc.2018.63005
[35]  Koopmans, T. (1933) über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2
[36]  Rauk, A. (2001) Orbital Interaction Theory of Organic Chemistry. 2nd Edition, John Wiley & Sons, New York, 34.
https://doi.org/10.1002/0471220418
[37]  Pearson, R.G. (1985) Absolute Electronegativity: An Hardness Correlated. Journal of the American Chemical Society, 107, 6801-6806.
https://doi.org/10.1021/ja00310a009
[38]  Pearson, R.G. (1987) Recent Advances in the Concept of Hard and Soft Acids and Bases. Journal of Chemical Education, 64, 561-567.
https://doi.org/10.1021/ed064p561
[39]  Walsh, D.A., Moran, H.W., Shamblee, D.A., Uwaydah, I.M., Welstead, W.J.Jr., et al. (1984) Antiinflammatory Agents 3 Synthesis and Pharmacological Evaluation of 2-amino-3-benzoylphenyl Acetic Acid and Analogues. Journal of Medicinal Chemistry, 11, 1379-1388.
https://doi.org/10.1021/jm00377a001
[40]  Wang, D., Hao, C., Wang, S., Dong, H. and Qiu, J. (2012) Time-Dependent Density Functional Theory Study on the Electronic Excited-State Hydrogen Bonding of the Chromophore Coumarin 153 in a Room Temperature Ionic Liquid. Journal of Molecular Modeling, 18, 937-945.
https://doi.org/10.1007/s00894-011-1131-3
[41]  Mylsamy, K., Ramasamy, K. and Lakshmipathi, S. (2013) Spectroscopic Investigations and Hydrogen Bond Interactions of 8-Aza Analogues of Xanthine, Theophylline and Caffeine: A Theoretical Study. Journal of Molecular Modeling, 19, 1835-1851.
https://doi.org/10.1007/s00894-012-1742-3
[42]  Kim, S.J., Flach, A.J. and Jampol, L.M. (2010) Nonsteroidal Anti-Inflammatory Drugs in Ophthalmology. Survey of Ophthalmology, 55, 108-133.
https://doi.org/10.1016/j.survophthal.2009.07.005
[43]  Ruiz, J., López, M., Mila, J., Lozoya, E. and Lozano, J.J. (1993) QSAR and Conformational Analysis of the Antiinflammatory Agent Amfenac and Analogues. Journal of Computer-Aided Molecular Design, 7, 183-198.
https://doi.org/10.1007/BF00126444
[44]  Ogawa, T., Sakaue, T., Terai, T. and Fukiage, C. (1995) Effects of Bromfenac Sodium, Non-Steroidal Anti-Inflammatory Drug, on Acute Ocular Inflammation. Nihon Ganka Gakkai Zasshi, 99, 406-411.
[45]  Waterbury, L.D., Silliman, D. and Jolas, T. (2006) Comparison of Cyclooxygenase Inhibitory Activity and Ocular Anti-Inflammatory Effects of Ketorolac Tromethamine and Bromfenac Sodium. Current Medical Research and Opinion, 22, 1133-1140.
https://doi.org/10.1185/030079906X112471

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133