全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Positioning  2019 

Simultaneous Localization and Mapping Solutions Using Monocular and Stereo Visual Sensors with Baseline Scaling System

DOI: 10.4236/pos.2019.104004, PP. 51-72

Keywords: SLAM, Vision, Kalman Filter, Monocular, Stereo

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, SLAM systems are introduced using monocular and stereo visual sensors. The SLAM solutions are implemented in both indoor and outdoor. The SLAM samples have been taken in different modes, such as a straight line that enables us to measure the drift, in addition to the loop sample that is used to test the loop closure and its corresponding trajectory deformation. In order to verify the trajectory scale, a baseline method has been used. In addition, a ground truth has been captured for both indoor and outdoor samples to measure the biases and drifts caused by the SLAM solution. Both monocular and stereo SLAM data have been captured with the same visual sensors which in the stereo situation had a baseline of 20.00 cm. It has been shown that, the stereo SLAM localization results are 75% higher precision than the monocular SLAM solution. In addition, the indoor results of the monocular SLAM are more precise than the outdoor. However, the outdoor results of the stereo SLAM are more precise than the indoor results by 30%, which is a result of the small stereo baseline cameras. In the vertical SLAM localization component, the stereo SLAM generally shows 60% higher precision than the monocular SLAM results.

References

[1]  Mur-Artal, R. and Tardos, J.D. (2014) ORB-SLAM: Tracking and Mapping Recognizable Features. Proceedings of Robotics: Science and Systems, Berkeley, USA.
[2]  Mur-Artal, R. and Tardos, J.D. (2015) Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM. Proceedings of Robotics: Science and Systems, Rome, Italy.
https://doi.org/10.15607/RSS.2015.XI.041
[3]  Mur-Artal, R. and Tardos, J.D. (2016) ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics, 33, 1255-1262.
https://doi.org/10.1109/TRO.2017.2705103
[4]  Mur-Artal, R., Montiel, J.M.M. and Tardos, J.D. (2015) ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31, 1147-1163.
https://doi.org/10.1109/TRO.2015.2463671
[5]  Kerl, C., Sturm, J. and Cremers, D. (2013) Dense Visual SLAM for RGB-D Cameras. Conference Intelligent Robots and Systems, November 2013, 2100-2106.
https://doi.org/10.1109/IROS.2013.6696650
[6]  Fioraio, N. and Konolige, K. (2011) Real Time Visual and Point Cloud Slam. Proceedings of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems, Los Angeles, USA.
[7]  Hess, W., Kohler, D., Rapp, H. and Andor, D. (2016) Real-Time Loop Closure in 2D LIDAR SLAM. IEEE International Conference on Robotics and Automation, Montreal, 20-24 May 2019, 1271-1278.
https://doi.org/10.1109/ICRA.2016.7487258
[8]  Zhang, J. and Singh, S. (2014) LOAM: Lidar Odometry and Mapping in Real-Time. Robotics: Science and Systems Conference, Berkeley, July 2014.
https://doi.org/10.15607/RSS.2014.X.007
[9]  Berkeley Localization and Mapping.
https://github.com/erik-nelson/blam
[10]  Andújar, D., Escolà, A., Rosell-Polo, J.R., Fernández-Quintanilla, C. and Dorado, J. (2013) Potential of a Terrestrial LiDAR-Based System to Characterise Weed Vegetation in Maize Crops. Computers and Electronics in Agriculture, 92, 11-15.
https://doi.org/10.1016/j.compag.2012.12.012
[11]  Ehlert, D. and Heisig, M. (2013) Sources of Angle-Dependent Errors in Terrestrial Laser Scanner-Based Crop Stand Measurement. Computers and Electronics in Agriculture, 93, 10-16.
https://doi.org/10.1016/j.compag.2013.01.002
[12]  Hosoi, F. and Omasa, K. (2009) Estimating Vertical Plant Area Density Profile and Growth Parameters of a Wheat Canopy at Different Growth Stages Using Three Dimensional Portable Lidar Imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 151-158.
https://doi.org/10.1016/j.isprsjprs.2008.09.003
[13]  Hosoi, F. and Omasa, K. (2009) Estimation of Vertical Plant Area Density Profiles in a Rice Canopy at Different Growth Stages by High-Resolution Portable Scanning LIDAR with a Lightweight Mirror. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 11-19.
https://doi.org/10.1016/j.isprsjprs.2012.08.001
[14]  Osterman, A., Godesa, T., Hocevar, M., Sirok, B. and Stopar, M. (2013) Real-Time Positioning Algorithm for Variable-Geometry Air-Assisted Orchard Sprayer. Computers and Electronics in Agriculture, 98, 175-182.
https://doi.org/10.1016/j.compag.2013.08.013
[15]  Rosell-Polo, J.R., Llorens, J., Sanz-Cortiella, R., Arnó-Satorra, J., Ribes-Dasi, M., Masip, J., Escolà, A., Camp, F., Solanelles-Batlle, F., Gràcia, F., Gil, E., Val, L., Planas-Demartí, S. and Palacin-Roca, J. (2009) Obtaining the Three-Dimensional Structure of Tree Orchards from Remote 2D Terrestrial LIDAR Scanning. Agricultural and Forest Meteorology, 149, 1505-1515.
https://doi.org/10.1016/j.agrformet.2009.04.008
[16]  Saeys, W., Lenaerts, B., Craessaerts, G. and De Baerdemaeker, J. (2009) Estimation of the Crop Density of Small Grains Using LiDAR Sensors. Biosystems Engineering, 102, 22-30.
https://doi.org/10.1016/j.biosystemseng.2008.10.003
[17]  Weiss, U. and Biber, P. (2011) Plant Detection and Mapping for Agricultural Robots Using a 3D LIDAR Sensor. Robotics and Autonomous Systems, 59, 265-273.
https://doi.org/10.1016/j.robot.2011.02.011
[18]  Coté, J.F., Widlowski, J.L., Fournier, R.A. and Verstraete, M.M. (2009) The Structural and Radiative Consistency of Three-Dimensional Tree Reconstructions from Terrestrial Lidar. Remote Sensing of Environment, 113, 1067-1081.
https://doi.org/10.1016/j.rse.2009.01.017
[19]  Keightley, K.E. and Bawden, G.W. (2010) 3D Volumetric Modeling of Grapevine Biomass Using Tripod LiDAR. Computers and Electronics in Agriculture, 74, 305-312.
https://doi.org/10.1016/j.compag.2010.09.005
[20]  Rosell-Polo, J.R., Sanz-Cortiella, R., Llorens, J., Arnó-Satorra, J., Escolà, A., Ribes-Dasi, M., Masip, J., Camp, F., Gràcia, F., Solanelles-Batlle, F., Pallejà-Cabré, T., Val, L., Planas-Demartí, S., Gil, E. and Palacin-Roca, J. (2009) A Tractor-Mounted Scanning LIDAR for the Non-Destructive Measurement of Vegetative Volume and Surface Area of Tree-Row Plantations: A Comparison with Conventional Destructive Measurements. Biosystems Engineering, 102, 128-134.
https://doi.org/10.1016/j.biosystemseng.2008.10.009
[21]  Sanz-Cortiella, R., Rosell-Polo, J.R., Llorens, J., Gil, E. and Planas-Demartí, S. (2013) Relationship between Tree Row LIDAR-Volume and Leaf Area Density for Fruit Orchards and Vineyards Obtained with a LIDAR 3D Dynamic Measurement System. Agricultural and Forest Meteorology, 171-172, 153-162.
https://doi.org/10.1016/j.agrformet.2012.11.013
[22]  Durrant-Whyte, H. and Bailey, T. (2006) Simultaneous Localization and Mapping: Part I. IEEE Robotics & Automation Magazine, 13, 99-110.
https://doi.org/10.1109/MRA.2006.1638022
[23]  Bailey, T. and Durrant-Whyte, H. (2006) Simultaneous Localization and Mapping (SLAM): Part II. IEEE Robotics &Automation Magazine, 13, 108-117.
https://doi.org/10.1109/MRA.2006.1678144
[24]  Kneip, L., Siegwart, R. and Pollefeys, M. (2012) Finding the Exact Rotation between Two Images Independently of the Translation. Proceedings of the European Conference on Computer Vision, Florence, October 2012, 696-709.
https://doi.org/10.1007/978-3-642-33783-3_50
[25]  Luhmann, T., Robson, S., Kyle, S. and Harley, I. (2006) Close Range Photogrammetry: Principles, Methods and Applications. Whittles, Dunbeath, 528.
[26]  Davison, A.J., Reid, I.D., Molton, N.D. and Stasse, O. (2007) MonoSLAM: Real-Time Single Camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1052-1067.
https://doi.org/10.1109/TPAMI.2007.1049
[27]  Civera, J., Davison, A.J. and Montiel, J.M.M. (2008) Inverse Depth Parametrization for Monocular SLAM. IEEE Transactions on Robotics, 24, 932-945.
https://doi.org/10.1109/TRO.2008.2003276
[28]  Chiuso, A., Favaro, P., Jin, H. and Soatto, S. (2002) Structure from Motion Causally Integrated over Time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 523-535.
https://doi.org/10.1109/34.993559
[29]  Eade, E. and Drummond, T. (2006) Scalable Monocular SLAM. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, New York, June 2006, 469.
[30]  Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F. and Sayd, P. (2006) Real Time Localization and 3d Reconstruction. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 363-370.
https://doi.org/10.1109/CVPR.2006.236
[31]  Klein, G. and Murray, D. (2007) Parallel Tracking and Mapping for Small AR Workspaces. IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, November 2007, 225-234.
https://doi.org/10.1109/ISMAR.2007.4538852
[32]  Strasdat, H., Montiel, J.M.M. and Davison, A.J. (2012) Visual SLAM: Why filter? Image and Vision Computing, 30, 65-77.
https://doi.org/10.1016/j.imavis.2012.02.009
[33]  Klein, G. and Murray, D. (2008) Improving the Agility of Keyframe-Based SLAM. European Conference on Computer Vision, Marseille, October 2008, 802-815.
https://doi.org/10.1007/978-3-540-88688-4_59
[34]  Portugal, D., Araújo, A. and Couceiro, M.S. (2019) A Guide for 3D Mapping with Low-Cost Sensors Using ROS. In: Koubaa, A., Ed., Robot Operating System (ROS), Springer, Berlin, 3-23.
https://doi.org/10.1007/978-3-030-20190-6_1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413