全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chemical Modification of Nanocellulose in Wood Adhesive: Review

DOI: 10.4236/ojpchem.2019.94008, PP. 86-99

Keywords: Nanocellulose, Biomaterial, Wood, Adhesive, Modification, Crosslinking

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bio-based nanomaterial is more attractive, due to its abundance, eco-friendliness and sustainability, when compared to the non-renewable toxic petrochemicals used in the wood adhesive sector. Recent studies on the formaldehyde emission by petrochemical binders in wood adhesives have attracted scientists for the research in biomaterial-based binders. In this aspect nanocellulose (NC) is one such material which has reinforcing ability and has natural binding properties. Conventional wood adhesive uses petrochemical-based binders and additives. Inclusion of nanocellulose in wood adhesive could drastically reduce the dependency on non-renewable petroleum sources. Even though wood adhesive uses NC for improving mechanical properties of the adhesive, usage is restricted because of its inability to enhance tackiness and adhesion compared with petrochemicals. Availability of free hydroxyl groups and feasibility for modification can be a potential way for functionalization of this nanomaterial. To improve adhesion properties and to make nanocellulose act as a functional filler, the crosslinking approach can be a possible solution. Enhancement of thermal properties with improved thermal degradation, water barrier properties of crosslinked films and enhanced mechanical properties especially in crosslinked poly (vinyl alcohol) (PVA) matrix, which is one of the binders for wood adhesive discussed in this review paper proves the potential applicability of crosslinked NC. Hence by inclusion of NC in wood adhesive and crosslinking with the binder, both mechanical and performance properties are expected to enhance which will create a new world and possibilities for the bio-based eco-friendly wood adhesives. In this review paper, we have reviewed the crosslinking of nanocellulose to enhance the performance of wood adhesives.

References

[1]  He, Z., Zhang, Y. and Wei, W. (2012) Formaldehyde and VOC Emissions at Different Manufacturing Stages of Wood-Based Panels. Building and Environment, 47, 197-204.
https://doi.org/10.1016/j.buildenv.2011.07.023
[2]  Böhm, M., Salem, M.Z.M. and Srba, J. (2012) Formaldehyde Emission Monitoring from a Variety of Solid Wood, Plywood, Blockboard and Flooring Products Manufactured for Building and Furnishing Materials. Journal of Hazardous Materials, 221-222, 68-79.
https://doi.org/10.1016/j.jhazmat.2012.04.013
[3]  Roffael, E. (2006) Volatile Organic Compounds and Formaldehyde in Nature, Wood and Wood Based Panels. Holz als Roh und Werkstoff, 64, 144-149.
https://doi.org/10.1007/s00107-005-0061-0
[4]  Navarrete, P., et al. (2012) Low Formaldehyde Emitting Biobased Wood Adhesives Manufactured from Mixtures of Tannin and Glyoxylated Lignin. Journal of Adhesion Science and Technology, 26, 1667-1684.
[5]  Hemmilä, V., Adamopoulos, S., Karlsson, O. and Kumar, A. (2017) Development of Sustainable Bio-Adhesives for Engineered Wood Panels—A Review. RSC Advances, 7, 38604-38630.
https://doi.org/10.1039/C7RA06598A
[6]  Syed, L.C., Imam, H., Gordon, S.H. and Mao, L.J. (2001) Environmentally Friendly Wood Adhesive from a Renewable Plant Polymer: Characteristics and Optimization. Polymer Degradation and Stability, 1, 40-44.
[7]  Jang, Y., Huang, J. and Li, K. (2011) A New Formaldehyde-Free Wood Adhesive from Renewable Materials. International Journal of Adhesion and Adhesives, 31, 754-759.
https://doi.org/10.1016/j.ijadhadh.2011.07.003
[8]  Fatemeh Ferdosian, B.Z., Pan, Z.H. and Gao, G.H. (2017) Bio-Based Adhesives and Evaluation for Wood Composites Application. Polymers (Basel), 9, 70-99.
https://doi.org/10.3390/polym9020070
[9]  Gadhave, R.V., Mahanwar, P.A. and Gadekar, P.T. (2017) Starch-Based Adhesives for Wood/Wood Composite Bonding: Review. Open Journal of Polymer Chemistry, 7, 19-32.
https://doi.org/10.4236/ojpchem.2017.72002
[10]  Gu, Y., Cheng, L., Gu, Z., Hong, Y., Li, Z. and Li, C. (2019) Preparation, Characterization and Properties of Starch-Based Adhesive for Wood-Based Panels. International Journal of Biological Macromolecules, 134, 247-254.
https://doi.org/10.1016/j.ijbiomac.2019.04.088
[11]  Jiang, Y., Chen, Q., Tan, H., Gu, J. and Zhang, Y. (2019) A Low-Cost, Formaldehyde-Free, and High-Performance Starch-Based Wood Adhesive. BioResources, 14, 1405-1418.
[12]  Wang, Z., et al. (2019) Improvement of the Bonding Properties of Cassava Starch-Based Wood Adhesives by Using Different Types of Acrylic Ester. International Journal of Biological Macromolecules, 126, 603-611.
https://doi.org/10.1016/j.ijbiomac.2018.12.113
[13]  Wang, Z., Li, Z., Gu, Z., Hong, Y. and Cheng, L. (2012) Preparation, Characterization and Properties of Starch-Based Wood Adhesive. Carbohydrate Polymers, 88, 699-706.
https://doi.org/10.1016/j.carbpol.2012.01.023
[14]  Gadhave, R.V., Srivastava, S., Mahanwar, P.A. and Gadekar, P.T. (2019) Lignin: Renewable Raw Material for Adhesive. Open Journal of Polymer Chemistry, 9, 27-38.
https://doi.org/10.4236/ojpchem.2019.92003
[15]  Yang, Z., Peng, H., Wang, W. and Liu, T. (2010) Lignin-Based Polycondensation Resins for Wood Adhesives. Journal of Applied Polymer Science, 116, 2658-2667.
[16]  Khan, M.A., Ashraf, S.M. and Malhotra, V.P. (2004) Development and Characterization of a Wood Adhesive Using Bagasse Lignin. International Journal of Adhesion and Adhesives, 24, 485-493.
https://doi.org/10.1016/j.ijadhadh.2004.01.003
[17]  Moubarik, A., Grimi, N., Boussetta, N. and Pizzi, A. (2013) Isolation and Characterization of Lignin from Moroccan Sugar Cane Bagasse: Production of Lignin-Phenol-Formaldehyde Wood Adhesive. Industrial Crops and Products, 45, 296-302.
https://doi.org/10.1016/j.indcrop.2012.12.040
[18]  Hussin, M.H., et al. (2017) Preparation of Environmental Friendly Phenol-Formaldehyde Wood Adhesive Modified with Kenaf Lignin. Beni-Suef University Journal of Basic and Applied Sciences, 6, 409-418.
https://doi.org/10.1016/j.bjbas.2017.06.004
[19]  Kalami, S., Chen, N., Borazjani, H. and Nejad, M. (2018) Comparative Analysis of Different Lignins as Phenol Replacement in Phenolic Adhesive Formulations. Industrial Crops and Products, 125, 520-528.
https://doi.org/10.1016/j.indcrop.2018.09.037
[20]  Sulaiman, N.S., Hashim, R., Sulaiman, O., Nasir, M., Amini, M.H.M. and Hiziroglu, S. (2018) Partial Replacement of Urea-Formaldehyde with Modified Oil Palm Starch Based Adhesive to Fabricate Particleboard. International Journal of Adhesion and Adhesives, 84, 1-8.
https://doi.org/10.1016/j.ijadhadh.2018.02.002
[21]  Lei, H., Du, G., Wu, Z., Xi, X. and Dong, Z. (2014) Cross-Linked Soy-Based Wood Adhesives for Plywood. International Journal of Adhesion and Adhesives, 50, 199-203.
https://doi.org/10.1016/j.ijadhadh.2014.01.026
[22]  Buddi, T., Muttil, N., Nageswara Rao, B. and Singh, S.K. (2015) Development of a Soya Based Adhesive in Plywood Manufacturing. Materials Today: Proceedings, 2, 3027-3031.
https://doi.org/10.1016/j.matpr.2015.07.289
[23]  Vnučec, D., Kutnar, A. and Goršek, A. (2017) Soy-Based Adhesives for Wood-Bonding: A Review. Journal of Adhesion Science and Technology, 31, 910-931.
https://doi.org/10.1080/01694243.2016.1237278
[24]  Luo, J., Luo, J., Bai, Y., Gao, Q. and Li, J. (2016) A High Performance Soy Protein-Based Bio-Adhesive Enhanced with a Melamine/Epichlorohydrin Prepolymer and Its Application on Plywood. RSC Advances, 6, 67669-67676.
https://doi.org/10.1039/C6RA15597A
[25]  Mo, X. and Sun, X.S. (2013) Soy Proteins as Plywood Adhesives: Formulation and Characterization. Journal of Adhesion Science and Technology, 27, 2014-2026.
https://doi.org/10.1080/01694243.2012.696916
[26]  Khan, I. and Poh, B.T. (2011) Natural Rubber-Based Pressure-Sensitive Adhesives: A Review. Journal of Polymers and the Environment, 19, 793-811.
https://doi.org/10.1007/s10924-011-0299-z
[27]  Radabutra, S., Khemthong, P., Saengsuwan, S. and Sangya, S. (2019) Preparation and Characterization of Natural Rubber Bio-Based Wood Adhesive: Effect of Total Solid Content, Viscosity, and Storage Time. Polymer Bulletin, 1-11.
https://doi.org/10.1007/s00289-019-02881-1
[28]  Thuraisingam, J., Mishra, P., Gupta, A., Soubam, T. and Piah, B.M. (2019) Novel Natural Rubber Latex/Lignin-Based Bio-Adhesive: Synthesis and Its Application on Medium Density Fiber-Board. Iranian Polymer Journal, 28, 283-290.
https://doi.org/10.1007/s13726-019-00696-5
[29]  John, N. and Joseph, R. (1997) Studies on Wood-to-Wood Bonding Adhesives Based on Natural Rubber Latex. Journal of Adhesion Science and Technology, 11, 225-232.
https://doi.org/10.1163/156856197X00327
[30]  David, N.H. (1989) Chapter 21 Cellulosic Adhesives. In: Richard, S.J.B., Hemingway, W. and Conner, A.H., Eds., Adhesives from Renewable Resources, ACS Symposium Series, American Chemical Society, Washington DC, 289-304.
https://doi.org/10.1021/bk-1989-0385.ch021
[31]  Zhang, X.J. and Young, R.A. (2000) Adhesion Properties of Cellulose Films. MRS Online Proceeding Library Archive, 586, 157.
https://doi.org/10.1557/PROC-586-157
[32]  Zhao, B.X., Wang, P., Zheng, T., Chen, C.Y. and Shu, J. (2006) Preparation and Adsorption Performance of a Cellulosic-Adsorbent Resin for Copper (II). Journal of Applied Polymer Science, 99, 2951-2956.
https://doi.org/10.1002/app.22986
[33]  Veigel, S., Müller, U., Keckes, J., Obersriebnig, M. and Gindl-Altmutter, W. (2011) Cellulose Nanofibrils as Filler for Adhesives: Effect on Specific Fracture Energy of Solid Wood-Adhesive Bonds. Cellulose, 18, 1227-1237.
https://doi.org/10.1007/s10570-011-9576-1
[34]  Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O. and Wang, S. (2012) Nanocrystalline Cellulose (NCC): A Renewable Nano-Material for Polyvinyl Acetate (PVA) Adhesive. European Polymer Journal, 48, 1829-1837.
https://doi.org/10.1016/j.eurpolymj.2012.08.008
[35]  López-Suevos, F., Eyholzer, C., Bordeanu, N. and Richter, K. (2010) DMA Analysis and Wood Bonding of PVAc Latex Reinforced with Cellulose Nanofibrils. Cellulose, 17, 387-398.
https://doi.org/10.1007/s10570-010-9396-8
[36]  Ayrilmis, N., Kwon, J.H., Lee, S.H., Han, T.H. and Park, C.W. (2016) Microfibrillated-Cellulose-Modified Urea-Formaldehyde Adhesives with Different F/U Molar Ratios for Wood-Based Composites. Journal of Adhesion Science and Technology, 30, 2032-2043.
https://doi.org/10.1080/01694243.2016.1175246
[37]  Kojima, Y., et al. (2014) Evaluation of Binding Effects in Wood Flour Board Containing Ligno-Cellulose Nanofibers. Materials (Basel), 6, 6853-6864.
https://doi.org/10.3390/ma7096853
[38]  Cataldi, A., Berglund, L., Deflorian, F. and Pegoretti, A. (2015) A Comparison between Micro- and Nanocellulose-Filled Composite Adhesives for Oil Paintings Restoration. Nanocomposites, 1, 195-203.
https://doi.org/10.1080/20550324.2015.1117239
[39]  Mahrdt, E., Pinkl, S., Schmidberger, C., van Herwijnen, H.W.G., Veigel, S. and Gindl-Altmutter, W. (2016) Effect of Addition of Microfibrillated Cellulose to Urea-Formaldehyde on Selected Adhesive Characteristics and Distribution in Particle Board. Cellulose, 23, 571-580.
https://doi.org/10.1007/s10570-015-0818-5
[40]  George, J. and Sabapathi, S.N. (2015) Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Nanotechnology, Science and Applications, 8, 45-54.
https://doi.org/10.2147/NSA.S64386
[41]  Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, 3941-3994.
https://doi.org/10.1039/c0cs00108b
[42]  Ferreira, F.V., Mariano, M., Rabelo, S.C., Gouveia, R.F. and Lona, L.M.F. (2018) Isolation and Surface Modification of Cellulose Nanocrystals from Sugarcane Bagasse Waste: From a Micro- to a Nano-Scale View. Applied Surface Science, 436, 1113-1122.
https://doi.org/10.1016/j.apsusc.2017.12.137
[43]  Grishkewich, N., Mohammed, N., Tang, J. and Tam, K.C. (2017) Recent Advances in the Application of Cellulose Nanocrystals. Current Opinion in Colloid & Interface Science, 29, 32-45.
https://doi.org/10.1016/j.cocis.2017.01.005
[44]  Habibi, Y. (2014) Key Advances in the Chemical Modification of Nanocelluloses. Chemical Society Reviews, 43, 1519-1542.
https://doi.org/10.1039/C3CS60204D
[45]  Hamed, S.A.A.K.M. and Hassan, M.L. (2019) A New Mixture of Hydroxypropyl Cellulose and Nanocellulose for Wood Consolidation. Journal of Cultural Heritage, 35, 140-144.
https://doi.org/10.1016/j.culher.2018.07.001
[46]  Lengowski, E.C., Bonfatti Júnior, E.A., Nishidate Kumode, M.M., Carneiro, M.E. and Satyanarayana, K.G. (2019) Nanocellulose-Reinforced Adhesives for Wood-Based Panels. In: Inamuddin, Thomas, S., Kumar Mishra, R. and Asiri, A.M., Eds., Sustainable Polymer Composites and Nanocomposites, No. 167, Springer, Berlin, 1001-1025.
https://doi.org/10.1007/978-3-030-05399-4_35
[47]  Jiang, W., Haapala, A., Tomppo, L., Pakarinen, T., Sirviö, J.A. and Liimatainen, H. (2018) Effect of Cellulose Nanofibrils on the Bond Strength of Polyvinyl Acetate and Starch Adhesives for Wood. BioResources, 13, 2283-2292.
https://doi.org/10.15376/biores.13.2.2283-2292
[48]  Veigel, S., Rathke, J., Weigl, M. and Gindl-Altmutter, W. (2012) Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive. Journal of Nanomaterials, 2012, Article ID: 158503.
https://doi.org/10.1155/2012/158503
[49]  Gadhave, R.V, Sheety, P., Mahanwar, P.A., Gadekar, P.T. and Desai, B.J. (2019) Silane Modification of Starch-Based Wood Adhesive: Review. Open Journal of Polymer Chemistry, 9, 53-62.
https://doi.org/10.4236/ojpchem.2019.93005
[50]  Desai, S.D., Patel, J.V. and Sinha, V.K. (2003) Polyurethane Adhesive System from Biomaterial-Based Polyol for Bonding Wood. International Journal of Adhesion and Adhesives, 23, 393-399.
https://doi.org/10.1016/S0143-7496(03)00070-8
[51]  Zheng, P., Li, Y., Li, F., Ou, Y., Lin, Q. and Chen, N. (2017) Development of Defatted Soy Flour-Based Adhesives by Acid Hydrolysis of Carbohydrates. Polymers (Basel), 9, 153.
https://doi.org/10.3390/polym9050153
[52]  Liu, D., Chen, H., Chang, P. R., Wu, Q., Li, K. and Guan, L. (2010) Biomimetic Soy Protein Nanocomposites with Calcium Carbonate Crystalline Arrays for Use as Wood Adhesive. Bioresource Technology, 101, 6235-6241.
https://doi.org/10.1016/j.biortech.2010.02.107
[53]  Kajtna, J. and Šebenik, U. (2017) Novel Acrylic/Nanocellulose Microsphere with Improved Adhesive Properties. International Journal of Adhesion and Adhesives, 74, 100-106.
https://doi.org/10.1016/j.ijadhadh.2016.11.013
[54]  Dastjerdi, Z., Cranston, E.D. and Dubé, M.A. (2018) Pressure Sensitive Adhesive Property Modification Using Cellulose Nanocrystals. International Journal of Adhesion and Adhesives, 81, 36-42.
https://doi.org/10.1016/j.ijadhadh.2017.11.009
[55]  Tayeb, A.H., Amini, E., Ghasemi, S. and Tajvidi, M. (2018) Cellulose Nanomaterials-Binding Properties and Applications: A Review. Molecules, 23, 1-24.
https://doi.org/10.3390/molecules23102684
[56]  Cai, Z. and Niska, K.O. (2012) Nanocelluloses: Potential Materials for Advanced Forest Products: Proceedings of Nanotechnology in Wood Composites Symposium.
[57]  Kojima, Y., et al. (2013) Binding Effect of Cellulose Nanofibers in Wood Flour Board. Journal of Wood Science, 59, 396-401.
https://doi.org/10.1007/s10086-013-1348-0
[58]  Cui, J., et al. (2015) Enhancement of Mechanical Strength of Particleboard Using Environmentally Friendly Pine (Pinus pinaster L.) Tannin Adhesives with Cellulose Nanofibers. Annals of Forest Science, 72, 27-32.
https://doi.org/10.1007/s13595-014-0392-2
[59]  Amini, E., Tajvidi, M., Gardner, D.J. and Bousfield, D.W. (2017) Utilization of Cellulose Nanofibrils as a Binder for Particleboard Manufacture. BioResources, 12, 4093-4110.
https://doi.org/10.15376/biores.12.2.4093-4110
[60]  Cheng, H.N., Kilgore, K., Ford, C., Fortier, C., Dowd, M.K. and He, Z. (2019) Cottonseed Protein-Based Wood Adhesive Reinforced with Nanocellulose. Journal of Adhesion Science and Technology, 33, 1357-1368.
https://doi.org/10.1080/01694243.2019.1596650
[61]  Kojima, Y., et al. (2016) Reinforcement of Fiberboard Containing Lingo-Cellulose Nanofiber Made from Wood Fibers. Journal of Wood Science, 62, 518-525.
https://doi.org/10.1007/s10086-016-1582-3
[62]  Chen, H., Nair, S.S., Chauhan, P. and Yan, N. (2019) Lignin Containing Cellulose Nanofibril Application in pMDI Wood Adhesives for Drastically Improved Gap-Filling Properties with Robust Bondline Interfaces. Chemical Engineering Journal, 360, 393-401.
https://doi.org/10.1016/j.cej.2018.11.222
[63]  Gao, Q., Li, J., Shi, S.Q., Liang, K. and Zhang, X. (2012) Soybean Meal-Based Adhesive Reinforced with Cellulose Nano-Whiskers. BioResources, 7, 5622-5633.
https://doi.org/10.15376/biores.7.4.5622-5633
[64]  Mesquita, R.G.A., et al. (2018) Urea Formaldehyde and Cellulose Nanocrystals Adhesive: Studies Applied to Sugarcane Bagasse Particleboards. Journal of Polymers and the Environment, 26, 3040-3050.
https://doi.org/10.1007/s10924-018-1189-4
[65]  Tanpichai, S. and Oksman, K. (2016) Cross-Linked Nanocomposite Hydrogels Based on Cellulose Nanocrystals and PVA: Mechanical Properties and Creep Recovery. Composites Part A, 88, 226-233.
https://doi.org/10.1016/j.compositesa.2016.06.002
[66]  Tanpichai, S. and Oksman, K. (2018) Crosslinked Poly(vinyl alcohol) Composite Films with Cellulose Nanocrystals: Mechanical and Thermal Properties. Journal of Applied Polymer Science, 135, Article ID: 45710.
https://doi.org/10.1002/app.45710
[67]  Sirviö, J.A., Honkaniemi, S., Visanko, M. and Liimatainen, H. (2015) Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-Linking Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 7, 19691-19699.
https://doi.org/10.1021/acsami.5b04879
[68]  Spoljaric, S., Salminen, A., Luong, N.D. and Seppälä, J. (2014) Stable, Self-Healing Hydrogels from Nanofibrillated Cellulose, Poly(vinyl alcohol) and Borax via Reversible Crosslinking. European Polymer Journal, 56, 105-117.
https://doi.org/10.1016/j.eurpolymj.2014.03.009
[69]  Pramanik, R., Ganivada, B., Ram, F., Shanmuganathan, K. and Arockiarajan, A. (2019) Influence of Nanocellulose on Mechanics and Morphology of Polyvinyl Alcohol Xerogels. The Journal of the Mechanical Behavior of Biomedical Materials, 90, 275-283.
https://doi.org/10.1016/j.jmbbm.2018.10.024
[70]  Song, T., Tanpichai, S. and Oksman, K. (2016) Cross-Linked Polyvinyl Alcohol (PVA) Foams Reinforced with Cellulose Nanocrystals (CNCs). Cellulose, 23, 1925-1938.
https://doi.org/10.1007/s10570-016-0925-y

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413