全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Attention Detection System Based on the Variability of Heart Rate

DOI: 10.4236/jst.2019.94006, PP. 54-70

Keywords: Arduino, RR Interval, Heart Rate Variability, Attention

Full-Text   Cite this paper   Add to My Lib

Abstract:

Attention is a cognitive and psychobiological variable that lacks objective measures in natural contexts of formal learning. However, it can be objectively measured from the heart autonomic activity. In the present study, the validity and reliability of a system for recording heart rate variability are demonstrated. Twelve prototypes were created and paired with standard electrocardiogram. Long segments with cardiac pulse recordings were used within ten minutes. A highly significant correlation index (p < 0.01) and a significantly high Cronbach’s alpha were obtained. In the variance analysis, all data analyzed presented a value of p < 0.05. It is concluded that there is no significant variation between paired systems; therefore, the attention detection system based on heart rate variability is valid and reliable.

References

[1]  Porges, S.W. (1995) Orienting in a Defensive World: Mammalian Modifications of Our Evolutionary Heritage: A Polyvagal Theory. Psychophysiology, 32, 301-318.
https://doi.org/10.1111/j.1469-8986.1995.tb01213.x
[2]  Porges, S.W. (2001) The Polyvagal Theory: Phylogenetic Substrates of a Social Nervous System. International Journal of Psychophysiology, 42, 123-146.
https://doi.org/10.1016/S0167-8760(01)00162-3
[3]  Porges, S.W. (2007) The Polyvagal Perspective. Biological Psychology, 74, 116-143.
https://doi.org/10.1016/j.biopsycho.2006.06.009
[4]  Thayer, J.F., Hansen, A.L., Saus-Rose, E. and Johnsen, B.H. (2009) Heart Rate Variability, Prefrontal Neural Function, and Cognitive Performance: The Neurovisceral Integration Perspective on Self-Regulation, Adaptation, and Health. Behavioral Medicine, 37, 141-153.
https://doi.org/10.1007/s12160-009-9101-z
[5]  Fonfría, A., Poy, R., Segarra, P., López, R., Esteller, A., Ventura, C., Moltó, J., et al. (2011) Variabilidad de la tasa cardíaca (HRV) y regulación emocional. Fòrum de Recerca, 16, 903-913.
[6]  Holzman, J. and Bridgett, D. (2017) Heart Rate Variability Indices as Bio-Markers of Top-Down Self-Regulatory Mechanisms: A Meta-Analytic Review. Neuroscience and Biobehavioral Reviews, 74, 233-255.
https://doi.org/10.1016/j.neubiorev.2016.12.032
[7]  Capuana, L.J., Dwyan, J., Tays, W.J., Elmers, J.L., Witherspoon, R. and Segalowitz, S. (2014) Factors Influencing the Role of Cardiac Autonomic Regulation in the Service of Cognitive Control. Biological Psychology, 102, 88-97.
https://doi.org/10.1016/j.biopsycho.2014.07.015
[8]  Shaffer, F. and Venner, J. (2013) Heart Rate Variability Anatomy and Physiology. Biofeedback, 41, 13-25.
https://doi.org/10.5298/1081-5937-41.1.05
[9]  Shaffer, F., McCraty, R. and Zerr, C. (2014) A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Frontiers in Psychology, 5, 1040.
https://doi.org/10.3389/fpsyg.2014.01040
[10]  Reyes Del Paso, G.A., Langewitz, W., Mulder, L.J.M., Van Roon, A. and Duschek, S. (2013) The Utility of Low Frequency Heart Rate Variability as an Index of Sympathetic Cardiac Tone: A Review with Emphasis on a Reanalysis of Previous Studies. Psychophysiology, 50, 477-487.
https://doi.org/10.1111/psyp.12027
[11]  Yoo, K., Rosenberg, M., Hsu, W., Zhang, S., Li, C., Scheinost, D., Constable, T. and Chun, M. (2018) Connectome-Based Predictive Modeling of Attention: Comparing Different Functional Connectivity Features and Prediction Methods across Datasets. NeuroImage, 167, 11-22.
https://doi.org/10.1016/j.neuroimage.2017.11.010
[12]  Rohr, C., Arora, A., Cho, I., Katlariwala, P., Dimond, D., Dewey, D. and Bray, S. (2018) Functional Network Integration and Attention Skills in Young Children. Developmental Cognitive Neuroscience, 30, 200-211.
https://doi.org/10.1016/j.dcn.2018.03.007
[13]  Onley, A., Risko, E., D’mello, S. and Graesser, A. (2015) Attention in Educational Contexts: The Role of the Learning Task in Guiding Attention. In: Fawcett, J., Risko, E. and Kingstone, A., Eds., The Handbook of Attention, MIT Press, London, 623-641.
[14]  Forman-Alberti, E.B. and Benjamin-Hinnant, J. (2016) Links between Autonomic Activity and Implicit Learning. International Journal of Psychophysiology, 110, 75-80.
https://doi.org/10.1016/j.ijpsycho.2016.10.014
[15]  Ohyama, T., Kaga, Y., Goto, Y., Aoyagi, K., Ishii, S., Kanemura, H., Aihara, M., et al. (2016) Developmental Changes in Autonomic Emotional Response during an Executive Functional Task: A Pupillometric Study during Wisconsin Card Sorting Test. Brain & Development, 39, 187-195.
https://doi.org/10.1016/j.braindev.2016.10.002
[16]  Sanchis, L., Prat, P. and Sitges, M. (2016) Imagen cardiovascular en la sala de electrofisiología. Revista Española de Cardiología, 69, 595-605.
https://doi.org/10.1016/j.recesp.2016.01.028
[17]  Bermudez, E., Klerman, E., Czeisler, C., Cohen, D., Wyatt, J. and Phillips, A. (2016) Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss. PLoS ONE, 11, e0151770.
https://doi.org/10.1371/journal.pone.0151770
[18]  Graveline, I.M. and Wamsley, E.J. (2017) The Impact of Sleep on Novel Concept Learning. Neurobiology of Learning and Memory, 141, 19-26.
https://doi.org/10.1016/j.nlm.2017.03.008
[19]  Itzek-Greulich, H., Randler, C. and Vollmer, C. (2016) The Interaction of Chronotype and Time of Day in a Science Course: Adolescent Evening Types Learn More and Are More Motivated in the Afternoon. Learning and Individual Differences, 51, 189-198.
https://doi.org/10.1016/j.lindif.2016.09.013
[20]  Luque-Casado, A., Perales, J., Cárdenas, D. and Sanabria, D. (2016) Heart Rate Variability and Cognitive Processing: The Autonomic Response to Task Demands. Biological Psychology, 113, 83-90.
https://doi.org/10.1016/j.biopsycho.2015.11.013
[21]  Zhang and Cicoira (2018) Flexible Self-Powered Biosensors. Nature, 561, 466-467.
https://doi.org/10.1038/d41586-018-06788-1
[22]  Nathan, A., Ahnood, A., Cole, M., Lee, M., Suzuki, Y., Hiralal, P., Milne, W., et al. (2012) Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 100, 1486-1517.
https://doi.org/10.1109/JPROC.2012.2190168
[23]  González-Barajas, J.E. (2014) Cálculo del umbral para detección de la onda R del complejo cardiaco. Tecno Lógicas, 17, 47-55.
https://doi.org/10.22430/22565337.198
http://www.scielo.org.co/pdf/teclo/v17n32/v17n32a05.pdf
[24]  Javier, G., Davis, M., Cristian, V. and Johann, N. (2015) R-Wave Detection Algorithm Using Integration of Virtual Instruments. 20th Symposium on Signal Processing, Images and Computer Vision, Bogota, 1-6.
https://doi.org/10.1109/STSIVA.2015.7330434
[25]  Urbano (2017) Diseño de algoritmo para cuantificación de frecuencia cardiaca promedio en dispositivo ARM (máquinas avanzadas tipo RISC) Universidad Santo Tomás: Bogotá.
[26]  Weippert, M., Kumar, M., Kreuzfeld, S., et al. (2010) Comparison of Three Mobile Devices for Measuring R-R Intervals and Heart Rate Variability: Polar S810i, Suunto t6 and an Ambulatory ECG System. European Journal of Applied Physiology, 109, 779-786.
https://doi.org/10.1007/s00421-010-1415-9
[27]  Geddes, M. (2017) Manual de Projetos do Arduinos. Novatec, São Paulo.
[28]  MacRoberts, M. (2015) Arduino Básico. 2th Edition, Novatec, São Paulo.
[29]  Monk, S. (2013) Programação com Arduino. Bookman, Porto Alegre.
[30]  Monk, S. (2014) 30 projetos com Arduino. Bookman, Porto Alegre.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413