全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三重光子晶体分形缝隙阵列天线的设计
Design of the Triple Photonic Crystal Fractal Slot Array Antenna

DOI: 10.12677/JA.2019.83003, PP. 19-25

Keywords: 三重光子晶体天线,分形缝隙结构,十字分形缝隙阵列结构,移动通信系统,射频识别系统
Triple Photonic Crystal Antenna
, Fractal Slot Structure, Cross Fractal Slot Array Structure, Mobile Communication System, RFID System

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对多频段兼容移动通信系统和RFID系统对天线的性能要求,创造性地提出了一种新型三重光子晶体天线结构,并将其与十字分形缝隙阵列结构相结合,设计了一款三重光子晶体分形缝隙阵列天线,制作了天线样品并进行了测试。根据天线样品测试结果,该款天线能够覆盖第二代、第三代、第四代、第五代移动通信系统所有工作频段和RFID系统三个工作频段,在各个工作频带都具有较大的工作带宽和较强的辐射能力。该款天线在所有工作频段都具有高稳定辐射特性,有望用于兼具RFID读写器功能的手机中。
According to the performance requirements of the antennas for the multi-band compatible mobile communication system and RFID system, a novel triple photonic crystal antenna is proposed crea-tively, and combined with the cross fractal slot array structure, a triple photonic crystal fractal slot array antenna is designed, and the antenna samples are made and tested. According to the test results of antenna samples, this antenna can work in the frequency bands of the 2G, the 3G, the 4G and the 5G mobile communication system and three working frequency bands of RFID system at the same time, and has a large working bandwidth and strong radiation power in each working frequency band. This antenna has high stable radiation characteristics in all working frequency bands and is expected to be used in mobile phones with RFID reader and writer functions.

References

[1]  Yin, J., Wu, Q., Yu, C., Wang, H. and Hong, W. (2019) Broadband Endfire Magnetoelectric Dipole Antenna Array Using SICL Feeding Network for 5G Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation, 67, 4895-4900.
https://doi.org/10.1109/TAP.2019.2916463
[2]  Zhang, Y., Deng, J.Y., Li, M.J., Sun, D. and Guo, L. (2019) A MIMO Dielectric Resonator Antenna with Improved Isolation for 5G mm-Wave Applications. IEEE Antennas and Wireless Propagation Letters, 18, 747-751.
https://doi.org/10.1109/LAWP.2019.2901961
[3]  Aliakbari, H., Abdipour, A., Costanzo, A., et al. (2019) Far-Field-Based Nonlinear Optimization of Millimeter-Wave Active Antenna for 5G Services. IEEE Transactions on Microwave Theory and Techniques, 67, 2985-2997.
https://doi.org/10.1109/TMTT.2019.2909898
[4]  Salah, H., Robert, J., Ahmed, H.A., Mahmoud, K. and Heu-berger, A. (2019) Theoretical Performance Evaluation of UHF-RFID Systems with Multi-Antenna Maximum-Likelihood Decoding. IEEE Journal of Radio Frequency Identification, 3, 108-117.
https://doi.org/10.1109/JRFID.2019.2909504
[5]  Deng, W., Li, Z., Xia, Y.L., Wang, K. and Pei, W. (2019) A Widely Linear MMSE Anti-Collision Method for Multi-Antenna RFID Readers. IEEE Communications Letters, 23, 644-647.
https://doi.org/10.1109/LCOMM.2019.2902545
[6]  Yan, Y., Ouyang, J., Ma, X., Wang, R. and Sharif, A. (2019) Circularly Polarized RFID Tag Antenna Design for Metallic Poles Using Characteristic Mode Analysis. IEEE Antennas and Wireless Propagation Letters, 18, 1327-1331.
https://doi.org/10.1109/LAWP.2019.2915369
[7]  Lee, W., Hong, Y.K., Won, H.Y., et al. (2019) Dual-Band (5G Millimeter-Wave and Dedicated Short-Range Communication) Stacked Patch Antenna for Advanced Telematics Applications. Microwave and Optical Technology Letters, 61, 1381-1387.
https://doi.org/10.1002/mop.31737
[8]  Li, Y.P., Zhao, Z.P., Tang, Z.Y. and Yin, Y. (2019) A Low-Profile, Dual-Band Filtering Antenna with High Selectivity for 5G Sub-6 GHz Applications. Microwave and Optical Technology Letters, 61, 2282-2287.
https://doi.org/10.1002/mop.31891
[9]  Hussain, R., Alreshaid, A.T., Podilchak, S.K., et al. (2017) A Compact 4G MIMO Antenna Integrated with a 5G Array for Current and Future Mobile Handsets. IET Microwaves Antennas & Propagation, 11, 271-279.
https://doi.org/10.1049/iet-map.2016.0738
[10]  Gu, X.Z. and Wen, G.Y. (2019) Design of a Near-Field RFID Antenna Array in Metal Cabinet Environment. IEEE Antennas and Wireless Propagation Letters, 18, 79-83.
https://doi.org/10.1109/LAWP.2018.2880965
[11]  Amendola, S., Palombi, A. and Marrocco, G. (2018) Inkjet Printing of Epidermal RFID Antennas by Self-Sintering Conductive Ink. IEEE Transactions on Microwave Theory and Techniques, 66, 1561-1569.
https://doi.org/10.1109/TMTT.2017.2767594
[12]  Marouf, F.Z. and Kerarti, D.Z. (2018) Study and Design of Wristband RFID Antenna for Healthcare Applications. Microwave and Optical Technology Letters, 60, 359-364.
https://doi.org/10.1002/mop.30973
[13]  Zhang, Y., Wang, B.C., Nie, A.M., et al. (2019) Carbonaceous Photonic Crystals Prepared by High-Temperature/Hyd- rothermal Carbonization as High-Performance Microwave Absorbers. Journal of Materials Science, 54, 14343-14353.
https://doi.org/10.1007/s10853-019-03909-7
[14]  Yang, H.W., Wang, Y.Q. and Peng, S. (2019) Analysis of the Propagation Properties of Photonic Crystals with Defect by the Precise Integration Time Domain Method. Journal of Electromagnetic Waves and Applications, 33, 2112-2125.
https://doi.org/10.1080/09205071.2019.1663275
[15]  Abd, E.O.A., Elsayed, H.A. and Sayed, M.I. (2019) One-Dimensional Defective Photonic Crystals for the Sensing and Detection of Protein. Applied Optics, 58, 8309-8315.
https://doi.org/10.1364/AO.58.008309
[16]  Okayama, H., Onawa, Y., Takahashi, H., et al. (2019) Reflective Arrayed Waveguide Grating with Parallel Arms Using One-Dimensional Photonic Crystal Reflector. Electronics Letters, 55, 1143-1145.
https://doi.org/10.1049/el.2019.2030
[17]  Zhang, X., Zhu, X.S. and Shi, Y.W. (2018) Improving the Performance of Hollow Fiber Surface Plasmon Resonance Sensor with One Dimensional Photonic Crystal Structure. Optics Express, 26, 130-140.
https://doi.org/10.1364/OE.26.000130
[18]  Zhu, X.M., Liu, B.S. and Wang, X.G. (2019) Design of Compact MEMS Antenna Based on Photonic Crystal Structure. Journal of Electrical Engineering and Technology, 14, 2085-2090.
https://doi.org/10.1007/s42835-019-00233-7
[19]  Ehsan, R. and Mehdi, A.B. (2018) Improving the Efficiency and Directivity of THz Photoconductive Antennas by Using a Defective Photonic Crystal Substrate. Optics Communications, 412, 74-79.
https://doi.org/10.1016/j.optcom.2017.12.011
[20]  Heba, Z., Moataza, H. and Adel, E.H. (2017) Optically Con-trolled UWB Antenna Using Photonic Crystal Waveguides. International Journal of Microwave and Wireless Tech-nologies, 9, 1661-1666.
https://doi.org/10.1017/S1759078717000241
[21]  Withayachumnankul, W., Yamada, R., Fumeaux, C., Fujita, M. and Nagatsuma, T. (2017) All-Dielectric Integration of Dielectric Resonator Antenna and Photonic Crystal Waveguide. Optics Express, 25, 14706-14714.
https://doi.org/10.1364/OE.25.014706
[22]  Zhu, X.M., Yang, X.D. and Wang, X.G. (2017) Compact Extremely Wideband Antenna with Photonic Crystal Structure Based on MEMS Manufacturing Technology. Progress in Elec-tromagnetics Research Letters, 67, 103-109.
https://doi.org/10.2528/PIERL17011906

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413