全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

风载作用下的超磁致伸缩能量采集与非线性振动控制一体化分析
Integrated Analysis of Giant Magnetostrictive Energy Harvesting and Nonlinear Vibration Control with Wind Load

DOI: 10.12677/OJAV.2019.74016, PP. 145-154

Keywords: 单自由度系统,非线性振动控制,非线性能量阱(NES),风载能量采集,超磁致伸缩材料(GMM)
Single Degree of Freedom System
, Nonlinear Vibration Control, Nonlinear Energy Sink (NES), Energy Harvesting with Wind Load, Giant Magnetostrictive Material (GMM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了风载作用下非线性能量阱(NES)减振和超磁致伸缩材料(GMM)能量采集一体化机理,该系统拥有良好的振动抑制效果和风载作用下的能量采集性能。利用Hamilton原理建立了位移驱动下的数学模型,并用Runge-Kutta算法进行了数值仿真,考察该系统的振动抑制效果,分析了超磁致(GMM)结构的能量采集效应。最后,进行了质量和风载相关参数的对比分析。研究结果表明,风载作用下的超磁致伸缩能量采集与非线性振动控制一体化系统具有良好的减振和能量采集效果。
In this paper, the mechanism of energy collection integration of nonlinear energy sink (NES) and giant magnetostrictive material (GMM) under wind load is studied. This system has good effect of vibration suppression and energy harvesting with wind load. By using Hamilton principle and Newton’s second law, the mathematical model driven by displacement is established, and the simulation is carried out with Runge-Kutta algorithm. The vibration suppression effect of the system is investigated, and the energy harvesting effect of GMM is analyzed. Finally, a comparative analysis of mass and wind load parameters is carried out. The results show that the integrated system of giant magnetostrictive energy harvesting and nonlinear vibration control with wind load has good effect of vibration reduction and energy harvesting.

References

[1]  Wang, L. and Yuan, F.G. (2008) Vibration Energy Harvesting by Magnetostrictive Material. Smart Materials and Structures, 17, 45009-45014.
https://doi.org/10.1088/0964-1726/17/4/045009
[2]  Davino, D., Giustiniani, A. and Visone, C. (2009) Analysis of a Magnetostrictive Power Harvesting Device with Hysteretic Characteristics. Journal of Applied Physics, 105, 07A939.
https://doi.org/10.1063/1.3077208
[3]  Fang, Z.W., Zhang, Y.W., Li, X., et al. (2017) Complexification-Averaging Analysis on a Giant Magneto-Strictive Harvester Integrated with a Nonlinear Energy Sink. Journal of Vibration and Acoustics, 140, Article ID: 021009.
https://doi.org/10.1115/1.4038033
[4]  Fang, Z.W., Zhang, Y.W., Li, X., Ding, H. and Chen, L.Q. (2016) Integra-tion of a Nonlinear Energy Sink and a Giant Magnetostrictive Energy Harvester. Journal of Sound and Vibration, 391, 35-49.
https://doi.org/10.1016/j.jsv.2016.12.019
[5]  Xu, K.F., Zhang, Y.W., Lu, Y.N. and Chen, L.Q. (2018) Dynamic Analysis of Nonlinear Energy Sink and Gaint Magnetostrictive Material Energy Harvester on Account of Nonlinear Output Frequency Response Functions. International Conference on Modelling, Identification and Control, Guiyang, 2-4 July 2018, 1-3.
https://doi.org/10.1109/ICMIC.2018.8529952
[6]  Barrero-Gil, A., Alonso, G. and Sanz-Andres, A. (2010) En-ergy Harvesting from Transverse Galloping. Journal of Sound and Vibration, 329, 2873-2883.
https://doi.org/10.1016/j.jsv.2010.01.028
[7]  Taghipour, J. and Dardel, M. (2015) Steady State Dynamics and Robustness of a Harmonically Excited Essentially Non-linear Oscillator Coupled with a Two-DOF Nonlinear Energy Sink. Mechanical Systems and Signal Processing, 62-63, 164-182.
https://doi.org/10.1016/j.ymssp.2015.03.018
[8]  Parkinson, J.V. and Smith, J.D. (1964) The Square Prism as an Aeroelastic Nonlinear Oscillator. The Quarterly Journal of Mechanics and Applied Mathematics, 17, 225-239.
https://doi.org/10.1093/qjmam/17.2.225
[9]  Berbyuk, V. (2007) Towards Dynamics of Controlled Multibody Systems with Magnetostrictive Transducers. Multibody System Dynamics, 18, 203-216.
https://doi.org/10.1007/s11044-007-9078-y
[10]  Kopidakis, G., Aubry, S. and Tsironis, G.P. (2001) Targeted Energy Transfer through Discrete Breathers in Nonlinear Systems. Physical Review Letters, 87, Article ID: 165501.
https://doi.org/10.1103/PhysRevLett.87.165501
[11]  Wierschem, N.E., Luo, J., Al-Shudeifat, M., et al. (2014) Experimental Testing and Numerical Simulation of a Six-Story Structure Incorporating Two-Degree-of-Freedom Nonlinear Energy Sink. Journal of Structural Engineering, 140, Article ID: 04014027.
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000978
[12]  Gendelman, O., Manevitch, L.I., Vakakis, A.F. and M’Closkey, R. (2001) Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Ham-iltonian Systems. Journal of Applied Mechanics, 68, 34-41.
https://doi.org/10.1115/1.1345524
[13]  Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S. and Wang, Z. (2014) Broad-band Tristable Energy Harvester: Modeling and Experiment Verification. Applied Energy, 133, 33-39.
https://doi.org/10.1016/j.apenergy.2014.07.077
[14]  Naifar, S., Bradai, S., Viehweger, C. and Kanoun, O. (2017) Survey of Electromagnetic and Magnetoelectric Vibration Energy Harvesters for Low Frequency Excitation. Measure-ment, 106, 251-263.
https://doi.org/10.1016/j.measurement.2016.07.074
[15]  Zhou, S. and Zuo, L. (2018) Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271-284.
https://doi.org/10.1016/j.cnsns.2018.02.017
[16]  Palneedi, H., Annapureddy, V., Priya, S. and Ryu, J. (2016) Sta-tus and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications. Actuators, 5, 9.
https://doi.org/10.3390/act5010009
[17]  Berbyuk, V. and Sodhani, J. (2008) Towards Modelling and De-sign of Magnetostrictive Electric Generators. Computers & Structures, 86, 307-313.
https://doi.org/10.1016/j.compstruc.2007.01.030
[18]  Chen, L.Q. and Jiang, W.A. (2015) Internal Resonance Energy Harvesting. Journal of Applied Mechanics, 82, Article ID: 031004.
https://doi.org/10.1115/1.4029606

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413