全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Shadow Detection Method Based on HMRF with Soft Edges for High-Resolution Remote-Sensing Images

DOI: 10.4236/jsip.2019.104011, PP. 200-210

Keywords: Shadow Detection, Soft Edges, Clustering, Remote-Sensing Images

Full-Text   Cite this paper   Add to My Lib

Abstract:

Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but are still not robust enough to get satisfactory results for failing to extract enough information from the original images. To take full advantage of various features of shadows, a new method combining edges information with the spectral and spatial information is proposed in this paper. As known, edge is one of the most important characteristics in the high-resolution remote-sensing images. Unfortunately, in shadow detection, it is a high-risk strategy to determine whether a pixel is the edge or not strictly because intensity values on shadow boundaries are always between those in shadow and non-shadow areas. Therefore, a soft edge description model is developed to describe the degree of each pixel belonging to the edges or not. Sequentially, the soft edge description is incorporating to a fuzzy clustering procedure based on HMRF (Hidden Markov Random Fields), in which more appropriate spatial contextual information can be used. More concretely, it consists of two components: the soft edge description model and an iterative shadow detection algorithm. Experiments on several remote sensing images have shown that the proposed method can obtain more accurate shadow detection results.

References

[1]  Jaynes, C., Webb, S., Steele, R.M., Brown, M. and Seales, W.B. (2001) Dynamic Shadow Removal from Front Projection Displays. Proceedings of the IEEE Conference on Visualization, San Diego, CA, 21-26 October 2001, 175-182.
https://doi.org/10.1109/VISUAL.2001.964509
[2]  Polidorio, A.M., Flores, F.C., Imai, N.N., Tommaselli, A.M.G. and Franco, C. (2003) Automatic Shadow Segmentation in Aerial Color Images. Proceedings of the 16th Brazilian Symposium on Computer Graphics and Image Processing, Sao Carlos, 12-15 October 2003, 270-277.
https://doi.org/10.1109/SIBGRA.2003.1241019
[3]  Huang, J., Xie, W. and Tang, L. (2004) Detection of and Compensation for Shadows in Colored Urban Aerial Images. Proceedings of the 5th World Congress on Intelligent Control and Automation, June 2004, 3098-3100.
[4]  Ma, H.J., Qin, Q.M. and Shen, X.Y. (2008) Shadow Segmentation and Compensation in High Resolution Satellite Images. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, 7-11 July 2008, 1036-1039.
[5]  Arevalo, V., Gonzalez, J. and Ambrosio, G. (2008) Shadow Detection in Color High-Resolution Satellite Images. International Journal of Remote Sensing, 29, 1945-1963.
https://doi.org/10.1080/01431160701395302
[6]  Tsai, V.J.D. (2006) A Comparative Study on Shadow Compensation of Color Aerial Images in Invariant Color Models. IEEE Transactions on Geoscience and Remote Sensing, 44, 1661-1671.
https://doi.org/10.1109/TGRS.2006.869980
[7]  Yang, J., Zhao, Z. and Yang, J. (2008) A Shadow Removal Method for High Resolution Remote Sensing Image. Geomatics and Information Science of Wuhan University, 33, 17-20.
[8]  Liu, H. and Xie, T. (2013) Study on Shadow Detection in High Resolution Remote Sensing Image of PCA and HIS Model. Remote Sensing Technology and Application, 28, 78-84.
[9]  Ngo, T.T., Collet, C. and Mazet, V. (2015) MRF and Dempster-Shafer Theory for Simultaneous Shadow/Vegetation Detection on High Resolution Aerial Color Images. Traitement du Signal, 32, 5037-5041.
https://doi.org/10.1109/ICIP.2014.7026020
[10]  Wang, C., Liu, J., Gong, M., Jiao, L. and Liu, J. (2014) Fuzzy c-Means Clustering with Weighted Energy Function in MRF for Image Segmentation. 2014 IEEE International Conference on Fuzzy System (Fuzzy-IEEE), Beijing, 6-11 July 2014, 210-215.
https://doi.org/10.1109/FUZZ-IEEE.2014.6891657
[11]  Liu, G., Zhang, Y. and Wang, A. (2015) Incorporating Adaptive Local Information into Fuzzy Clustering for Image Segmentation. IEEE Transactions on Image Processing, 24, 3990-4000.
https://doi.org/10.1109/TIP.2015.2456505
[12]  Ge, W.Y. and Liu, G.Y. (2018). Unsupervised Classification of High-Resolution Remote-Sensing Images under Edge Constraints. Pattern Recognition and Computer Vision.
https://doi.org/10.1117/12.2285777
[13]  Chatzis, S.P. and Varvarigou, T.A. (2008) A Fuzzy Clustering Approach toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation. IEEE Transactions on Fuzzy Systems, 16, 1351-1361.
https://doi.org/10.1109/TFUZZ.2008.2005008

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413