全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Utilization of Various Analogy of Synthetic Nanoporous Zeolites and Composite of Zeolites for Decontamination/Detoxification of CWA Simulants—An Updated Review

DOI: 10.4236/ijnm.2019.84004, PP. 35-71

Keywords: Zeolite, Composites, Adsorption, Decontamination, Metal Oxide, CWA, Simulants

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this review, we summaries the past few year work on the chemistry of CWA’s and their simulants on various heterogeneous surfaces of zeolites, composites of zeolites and doped zeolite with transition metal oxides. This review elaborates an updated literature overview on the degradation of CWA’s and its simulants. The data written in this review were collected from the peer-reviewed national and international literature.

References

[1]  Gangele, R., Pawaiya, P. and Pandey, Y. (2014) Synthetic Zeolites-Structure Properties and Application Area. International Journal of Scientific Research, 3, 78.
[2]  Breck, D.W. (1974) Zeolite Molecular Sieves: Structure, Chemistry and Use. John Wiley and Sons, London.
[3]  Bekkum, V.H., Flanigen, E.M., Jacobs, P.A. and Jansen, J.C. (1991) Introduction to Zeolite Science and Practice. 2nd Edition, Elsevier, Amsterdam.
[4]  Elshorbagy, W. and Chowdhury, R.K. (2013) Water Treatment. Chapter 5, InTech, London.
https://doi.org/10.5772/2883
[5]  https://www.crystalmarketreport.com/global-zeolite-for-detergents-market-research-report
[6]  Georgiev, D., Bogdanov, B., Angelova, K., Markovska, I. and Hristov, Y. (2009) Synthetic Zeolites-Structure, Classification, Current Trends in Zeolite Synthesis. International Science Conference, Stara Zagora, 4-5 June 2009, 1-5.
[7]  Grassian, V.H. and Larsen, S.C. (2008) Applications of Nanocrystalline Zeolites to CWA Decontamination. In: Nanoscience and Nanotechnology for Chemical and Biological Defense, Chapter 19, American Chemical Society, Washington DC, 249-260.
https://doi.org/10.1021/bk-2009-1016.ch019
[8]  Bhardwaj, D., Tomar, R., Khare, P.S., Goswami, Y. and Srivastva, P. (2013) Hydrothermal Synthesis and Characterization of Zeolite: Effect of Crystallization Temperature. Research Journal of Chemical Sciences, 3, 1.
[9]  Xu, R., Pang, W., Yu, J., Huo, Q. and Chen, J. (2007) Chemistry of Zeolites and Related Porous Mate Rials: Synthesis and Structure. John Wiley & Sons Ltd., Singapore.
[10]  Smith, J.V. (1988) Topochemistry of Zeolites and Related Materials. 1. Topology and Geometry. Chemical Reviews, 88, 149-182.
https://doi.org/10.1021/cr00083a008
[11]  Szostak, R. (1989) Molecular Sieves: Principles of Synthesis and Identification. 2nd Edition, Blackie Academic and Professional, London.
[12]  Lutz, W. (2014) Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited. Advances in Materials Science and Engineering, 2014, Article ID: 724248.
https://doi.org/10.1155/2014/724248
[13]  Flanigan, E.M. (1980) Molecular Sieve Zeolite Technology: The First Twenty-Five Year. Proceedings of the 5th International Conference on Zeolites, Italy, 760-780.
[14]  Moshoeshoe, M., Nadiye-Tabbiruka, M.S. and Obuseng, V. (2017) A Review of the Chemistry, Structure, Properties and Applications of Zeolites. American Journal of Materials Science, 7, 196-221.
[15]  Venuto, P.B. and Habib Jr., E.T. (1978) Catalyst-Feedstock-Engineering Interactions in Fluid Catalytic Cracking. Catalysis Reviews: Science and Engineering, 18, 1-150.
https://doi.org/10.1080/03602457808067529
[16]  Rawlence, D.J. and Gosling, K. (1988) FCC Catalyst Performance Evaluation. Applied Catalysis, 43, 213-237.
https://doi.org/10.1016/S0166-9834(00)82729-3
[17]  Kerr, G.T. (1968) Chemistry of Crystalline Aluminosilicates. V. Preparation of Aluminum-Deficient Faujasites. The Journal of Physical Chemistry, 72, 2594-2596.
https://doi.org/10.1021/j100853a058
[18]  Beyer, H.K., Belenykaja, I.M., Hange, F., Tielen, M., Grobet, P.J. and Jacobs, P.A. (1985) Preparation of High-Silica Faujasites by Treatment with Silicon Tetrachloride. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phase, 81, 2889-2901.
https://doi.org/10.1039/f19858102889
[19]  Modhera, B., Chakraborty, M., Parikh, P.A. and Jasra, R.V. (2009) Synthesis of Nano-Crystalline Zeolite β: Effects of Crystallization Parameters. Crystal Research and Technology, 44, 379-385.
https://doi.org/10.1002/crat.200800474
[20]  Kumar, P., Mal, N., Oumi, Y., Yamanaa, K. and Sanoc, T. (2001) Mesoporous Materials Prepared Using Coal Fly Ash as the Silicon and Aluminium Source. Journal of Materials Chemistry, 11, 3285-3290.
https://doi.org/10.1039/b104810b
[21]  Zeng, R., Umana, J.C., Querol, X., Lopez, S.A., Plana, F. and Zuhang, X. (2002) Zeolite Synthesis from High Silicon Aluminium Fly Ash from East China. Journal of Chemical Technology & Biotechnology, 77, 267-273.
https://doi.org/10.1002/jctb.598
[22]  Economics of Zeolite (1988) Reports on Metal and Minerals. Roskill Information Services Ltd.
[23]  Hollman, G.G., Steenbruggen, G. and Janssen, J.M. (1999) A Two Step Process for Synthesis of Zeolite from Coal Fly Ash. Fuel, 78, 1225-1230.
https://doi.org/10.1016/S0016-2361(99)00030-7
[24]  Park, M., Choi, C.L., Lim, W.T., Kim, M.C., Choi, J. and Heo, N.H. (2004) Molten-Salt Method for the Synthesis of Zeolite Materials I; Zeolite Formation in Alkaline Molten Salt System. Microporous and Mesoporous Materials, 27, 555-564.
[25]  Rayalu, S., Meshram, S.U. and Hasan, M.Z. (2002) Highly Crystalline Faujasitic from Fly Ash. Journal of Hazardous Materials, 77, 123-131.
https://doi.org/10.1016/S0304-3894(00)00212-0
[26]  Inada, M., Eguchi, Y., Enomoto, N. and Hojo, J. (2005) Synthesis of Zeolite from Coal Fly Ashes with Different Silica Aluminium Composition. Fuel, 84, 299-304.
https://doi.org/10.1016/j.fuel.2004.08.012
[27]  Querol, X., Moreno, N., Alastuey, A., Juan, R., Andrew, J.M., Lopez-Soler, A., Ayora, C., Medinaceli, A. and Valero, A. (2007) Synthesis of High Ion Exchange Zeolites from Coal Fly Ash. Geologica Acta, 5, 49-57.
[28]  Lolay, P.K. and Singh, D.N. (2001) Physical, Chemical Minerological and Thermal Properties of Canosphers from an Ash Lagoon. Cement and Concrete Research, 31, 539-542.
https://doi.org/10.1016/S0008-8846(01)00457-4
[29]  http://www.lenntech.pl/zeolites-applications.htm
[30]  Kulprathipanja, S. (2010) Zeolites in Industrial Separation and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
https://doi.org/10.1002/9783527629565
[31]  Murata, K.J., Firmoso, M.L.L. and Roisenberg, A. (1987) Distribution of Zeolites in Lavas of Southeastern Parana Basin, State of Rio Grande Do Sul, Brazil. The Journal of Geology, 95, 455-467.
https://doi.org/10.1086/629143
[32]  Meng, X. and Xiao, F.S. (2014) Green Routes for Synthesis of Zeolites. Chemical Reviews, 114, 1521-1543.
https://doi.org/10.1021/cr4001513
[33]  Wu, Q., Liu, X., Zhu, L., Ding, L., Gao, P., Wang, X., Pan, S., Bian, C., Meng, X., Xu, J., Deng, F., Maurer, S., Muller, U. and Xiao, F.S. (2015) Solvent-Free Synthesis of Zeolites from Anhydrous Starting Raw Solids. Journal of the American Chemical Society, 137, 1052-1055.
https://doi.org/10.1021/ja5124013
[34]  Meng, X., Wu, Q., Chen, F. and Xiao, F.S. (2015) Solvent-Free Synthesis of Zeolite Catalysts. Science China Chemistry, 58, 6-13.
https://doi.org/10.1007/s11426-014-5252-2
[35]  Conner, W.C., Tompsett, G., Lee, K.H. and Sigfrid Yngvesson, K. (2004) Microwave Synthesis of Zeolites: 1. Reactor Engineering. The Journal of Physical Chemistry, 108, 13913-13920.
https://doi.org/10.1021/jp037358c
[36]  Weller, M.T. and Dannl, S.E. (1998) Hydrothermal Synthesis of Zeolites. Current Opinion in Solid State & Materials Science, 3, 137-l43.
https://doi.org/10.1016/S1359-0286(98)80078-8
[37]  Holmes, S.M., Alomair, A.A. and Kovo, A.S. (2012) The Direct Synthesis of Pure Zeolite—A Using ‘Virgin’ Kaolin. RSC Advances, 2, 11491-11494.
https://doi.org/10.1039/c2ra22263a
[38]  http://www.personal.utulsa.edu/~geoffrey-price/zeolite/beta.htm
[39]  Lee, T.P., Saada, B., Nga, E.P. and Salleh, B. (2012) Zeolite Linde Type L as Micro-Solid Phase Extraction Sorbent for the High Performance Liquid Chromatography Determination of Ochratoxin A in Coffee and Cereal. Journal of Chromatography A, 1237, 46-54.
https://doi.org/10.1016/j.chroma.2012.03.031
[40]  de Sousa Jr., L.V., Silva, A.O.S., Silva, B.J.B. and Alencar, S.L. (2014) Synthesis of ZSM-22 in Static and Dynamic System Using Seeds. Modern Research in Catalysis, 3, 49-56.
[41]  Wadood Khan, A.L., Kotta, S., Husain Ansari, S., Ali, J. and Sharma, R.K. (2013) Recent Advances in Decontamination of Chemical Warfare Agents. Defence Science Journal, 63, 487-496.
[42]  Cheng, S., Wei, Y., Feng, Q., Qiu, K.Y., Pang, J.B., Jansen, S.A., Yin, R. and Ong, K. (2003) Facile Synthesis of Mesoporous Gold-Silica Nanocomposite Materials via Sol-Gel Process with Nonsurfactant Templates. Chemistry of Materials, 15, 1560-566.
https://doi.org/10.1021/cm0202106
[43]  Haugen, D.M. (2001) Biological and Chemical Weapons. Green Haven Press, Inc., San Diego, CA.
[44]  Lisa, M.E., Tobin, J.D. and Kim, D.J. (2007) Technological Advancements for the Detection of and Protection against Biological and Chemical WARFARE agents. Chemical Society Reviews, 36, 458-470.
[45]  Christopher, G.W., Cieslak, T.J., Pavlin, J.A. andEitzen Jr., E.M. (1997) Biological Warfare: A Historical Perspective. The Journal of the American Medical Association, 278, 412-417.
[46]  Geissler, E. (1986) Biological and Toxin Weapons Today. Oxford University Press Inc., New York.
[47]  Wiener, S.W. and Hoffman, R.S. (2004) Nerve Agents: A Comprehensive Review. Journal of Intensive Care Medicine, 19, 22-37.
https://doi.org/10.1177/0885066603258659
[48]  Worek, F., Wille, T., Koller, M. and Thiermann, H. (2016) Toxicollogy of Organophosphorus Compounds in View of an Increasing Terrorist Threat. Archives of Toxicology, 90, 2131-2145.
https://doi.org/10.1007/s00204-016-1772-1
[49]  Vijayaraghavan, R., Kulkarni, A., Pant, S.C., Kumar, P., Rao, P.V.L., Gupta, N., Gautam, A. and Ganesan, K. (2005) Differential Toxicity of Sulfur Mustard Administered through Percutaneous, Subcutaneous, and Oral Routes. Toxicology and Applied Pharmacology, 202, 180-202.
https://doi.org/10.1016/j.taap.2004.06.020
[50]  https://www.sciencehistory.org/distillations/a-brief-history-of-chemical-war
[51]  Rodriguez-Llanes, J.M., Guha-Sapir, D., Schlüter, B.-S. and Hsiao-Rei Hicks, M. (2018) Epidemiological Findings of Major Chemical Attacks in the Syrian War Are Consistent with Civilian Targeting: A Short Report. Conflict and Health, 12, Article No. 16.
https://doi.org/10.1186/s13031-018-0150-4
[52]  Sharma, N. and Kakkar, R. (2013) Recent Advancements on Warfare Agents/Metal Oxides Surface Chemistry and Their Simulation Study. Advanced Materials Letters, 4, 508-521.
[53]  Ganesan, K., Raza, S.K. and Vijayaraghavan, R. (2010) Chemical Warfare Agents. Journal of Pharmacy and Bioallied Sciences, 2, 166-178.
https://doi.org/10.4103/0975-7406.68498
[54]  Munro, N.B., Watson, A.P., Ambrose, K.R. and Griffin, G.D. (1990) Treating Exposure to Chemical Warfare Agents: Implications for Health Care Providers and Community Emergency Planning. Environmental Health Perspectives, 89, 205-215.
https://doi.org/10.1289/ehp.9089205
[55]  Singh, B., Prasad. G.K., Pandey. K.S., Danikhel, R.K. and Vijayaraghavan, R. (2010) Decontamination of Chemical Warfare Agents. Defence Science Journal, 60, 428-441.
[56]  https://en.wikipedia.org/wiki/Blood_agent
[57]  https://www.britannica.com/technology/chemical-weapon
[58]  http://en.chembase.cn/substance-174275.html
[59]  https://en.wikipedia.org/wiki/Phosgene
[60]  https://en.wikipedia.org/wiki/Diphenylcyanoarsine/media/File:Clark-2.svg
[61]  Beswick, F.W. (1983) Chemical Agents Used in Riot Control and Warfare. Human & Experimental Toxicology, 2, 247-256.
https://doi.org/10.1177/096032718300200213
[62]  Allantyne, B. (1977) Riot Control Agents (Biomedical and Health Aspects of the Use of Chemicals in Civil Disturbances). In: Scott, R.B. and Frazer, J., Eds., Medical Annual, Wright and Sons, Bristol, 7.
[63]  Bennett, S.R., et al. (1984) Environmental Hazards of Chemical Agent Simulants. CRDCTR-84055. US Army Armament, Munitions, and Chemical Command, Aberdeen Proving Ground, MD.
[64]  Bartelt-Hunt Shannon, L., Knappe Detlef, R.U. and Barlaz Morton, A. (2008) A Review of Chemical War fare Agent Simulants for the Study of Environmental Behavior. Critical Reviews in Environmental Science and Technology, 38, 112-136.
https://doi.org/10.1080/10643380701643650
[65]  Hiscock, J.R., Bustone, G.P. and Clark, E.R. (2017) Decontamination and Remediation of the Sulfur Mustard Simulant CEES with “Off-the-Shelf” Reagents in Solution and Gel States: A Proof-of-Concept Study. Chemistry Open, 6, 497-500.
https://doi.org/10.1002/open.201700063
[66]  Ghabili, K., Agutter Paul, S., Ghanei, M., Ansarin, K., Panahi, Y. and Shoja Mohammadali, M. (2011) Sulfur Mustard Toxicity: History, Chemistry, Pharmacokinetics, and Pharmacodynamics. Critical Reviews in Toxicology, 41, 384-403.
https://doi.org/10.3109/10408444.2010.541224
[67]  Smith Matthew, E. and Swoboda Henry, D. (2019) V-Series (Ve, Vg, Vm, Vx) Toxicity. StatPearls Publishing.
[68]  https://en.wikipedia.org/wiki/Lewisite
[69]  Pechura, C.M. and Rall, D.P. (1993) Committee on the Survey of the Health Effects of Mustard Gas and Lewisite. Institute of Medicine, National Academies Press, Washington DC.
[70]  Gorzkowska-Sobas, A.A. (2013) Norwegian Defence Research Establishment (FFI), FFI-Rapport.
[71]  Sferopoulos, R. (2008) A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-off-The-Shelf Items, Australian Government Department of Defense Research, DSTO-GD-0570.
[72]  The Royal Society (2004) Report on Making the UK Safer: Detecting and Decontaminating Chemical and Biological Agents. Science Advice Section the Royal Society 6-9 Carlton House Terrace London SW1Y 5AG.
[73]  Smith, B.M. (2008) Catalytic Methods for the Destruction of Chemical Warfare Agents under Ambient Conditions. Chemical Society Reviews, 37, 470-478.
https://doi.org/10.1039/B705025A
[74]  Okun, N.M., Tarr, J.C., Hilleshiem, D.A., Zhang, L., Hardcastle, K.I. and Hill, C.L. (2006) Highly Reactive Catalysts for Aerobic Thioether Oxidation: The Fe-Substituted Polyoxometalate/Hydrogen Dinitrate System. Journal of Molecular Catalysis A: Chemical, 246, 11-17.
https://doi.org/10.1016/j.molcata.2005.10.006
[75]  Singh, B.K. and Walker, A. (2006) Microbial Degradation of Organophosphorus Compounds. FEMS Microbiology Reviews, 30, 428-471.
https://doi.org/10.1111/j.1574-6976.2006.00018.x
[76]  Russell, A.J., Erbeldinger, M., Defrank, J.J., Kaar, J. and Drevon, G. (2002) Catalytic Buffers Enable Positive-Response Inhibition-Based Sensing of Nerve Agents. Biotechnology and Bioengineering, 77, 352-357.
https://doi.org/10.1002/bit.10152
[77]  Rojas, H.M. and Moss R.A. (2002) Phosphorolytic Reactivity of o-Iodosylcarboxylates and Related Nucleophiles. Chemical Reviews, 102, 2497-2522.
https://doi.org/10.1021/cr9405462
[78]  Wagner, G.W., Procell, L.R., O’Connor, R.J., Shekar, M., Carnes, C.L., Kapoor, P.N. and Klabunde, K.J. (1999) Reactions of VX, GB, GD, and HD with Nanosize MgO. Journal of the American Chemical Society, 103, 3225-3228.
https://doi.org/10.1021/jp984689u
[79]  Wagner, G.W., Bartram, P.W., Koper, O. and Klabunde, K.J. (1999) Reactions of VX, GD, and HD with Nanosize MgO. The Journal of Physical Chemistry B, 103, 3225-3228.
https://doi.org/10.1021/jp984689u
[80]  Li, S.T. and Klabunde, K.J. (1985) Thermally Activated Magnesium Oxide Surface Chemistry. Adsorption and Decomposition of Phosphorus Compounds. Langmuir, 1, 600-605.
https://doi.org/10.1021/la00065a015
[81]  Wagner, G.W., Koper, O., Lucas, E., Decker, S. and Klabunde, K.J. (2000) Reactions of VX, GD, and HD with Nanosize CaO: Autocatalytic Dehydrohalogenation of HD. The Journal of Physical Chemistry B, 104, 5118-5123.
https://doi.org/10.1021/jp000101j
[82]  Wagner, G.W., Procell, L.R., O’Connor, R.J., Shekar, M., Carnes, C.L., Kapoor, P.N. and Klabunde, K.J. (2001) Reactions of VX, GB, GD, and HD with Nanosize Al2O3. Formation of Aluminophosphonates. Journal of the American Chemical Society, 123, 1636-1644.
https://doi.org/10.1021/ja003518b
[83]  Mahato, T.H., Prasad, G.K., Singh, B., Acharya, J., Srivastava, A.R. and Vijayaraghavan, R. (2009) Nanocrystalline Zinc Oxide for the Decontamination of Sarin. Journal of Hazardous Materials, 165, 928-932.
https://doi.org/10.1016/j.jhazmat.2008.10.126
[84]  Mitchel, M.B., Sheinker, V.N. and Mintz, E.A. (1997) Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides. The Journal of Physical Chemistry B, 101, 11192-11203.
https://doi.org/10.1021/jp972724b
[85]  Gordon, W.O., Tissue, B.M. and Morris, J.R. (2007) Adsorption and Decomposition of Dimethyl Methylphosphonate on Y2O3 Nanoparticles. The Journal of Physical Chemistry C, 111, 3233-3240.
https://doi.org/10.1021/jp0650376
[86]  Prasad, G.K., Mahato, T.H., Singh, B., Ganesan, K., Pandey, P. and Sekhar, K. (2007) Detoxification Reactions of Sulphur Mustard on the Surface of Zinc Oxide Nanosized Rods. Journal of Hazardous Materials, 149, 460-464.
https://doi.org/10.1016/j.jhazmat.2007.04.010
[87]  Kleinhammes, A., Wagner, G.W., Kulkarni, H., Qi, Y., Zhang, J., Qin, L.C. and Wu, Y. (2005) Decontamination of 2-Chloroethyl Ethylsulfide Using Titanate Nanoscrolls. Chemical Physics Letters, 411, 81-85.
https://doi.org/10.1016/j.cplett.2005.05.100
[88]  Prasad, G.K., Mahato, T.H., Pandey, P., Singh, B., Suryanarayana, M.V.S., Saxena, A. and Sekhar, K. (2007) Reactive Sorbent Based on Manganese Oxide Nanotubes and Nanosheets for the Decontamination of 2-Chloro-Ethyl Ethyl Sulphide. Microporous and Mesoporous Materials, 106, 256-261.
https://doi.org/10.1016/j.micromeso.2007.03.004
[89]  Mahato, T.H., Prasad, G.K., Singh, B., Batra, K. and Ganesan, K. (2010) Mesoporous Manganese Oxide Nanobelts for Decontamination of Sarin, Sulphur Mustard and Chloro Ethyl Ethyl Sulphide. Microporous and Mesoporous Materials, 132, 15-21.
[90]  Bromberg, L., Schreuder Gibson, H., Creasy, W.R., McGarvey, D.J., Fry, R.A. and Alan Hatton, T. (2009) Degradation of Chemical Warfare Agents by Reactive Polymers. Industrial & Engineering Chemistry Research, 48, 1650-1659.
https://doi.org/10.1021/ie801150y
[91]  Sadeghi, M., Yekta, S. and Babanezhad, E. (2014) MnO 2-AgX Zeolite Nanocomposite as an Adsorbent Catalyst for the Decontamination against Sulfur Mustard Simulants. Caspian Journal of Chemistry, 3, 57-75.
[92]  Agarwal, S.R., Subramanian, S. and Seeram, R. (2012) Functionalized Cellulose: PET Polymer Fibers with Zeolites for Detoxification against Nerve Agents. Journal of Inorganic Materials, 27, 332-336.
https://doi.org/10.3724/SP.J.1077.2011.11558
[93]  Carniato, F., Bisio, C., Evangelisti, C., Psaro, R., Dal Santo, V., Costenaro, D., Marcheseand, L. and Guidotti, M. (2018) Iron-Montmorillonite Clays as Active Sorbents for the Decontamination of Hazardous Chemical Warfare Agents. Dalton Transactions, 47, 2939-2948.
https://doi.org/10.1039/C7DT03859C
[94]  Abdul Majid, S., Ahmad Mir, M. and Mohammad Mir, J. (2018) Nitrate and Phosphate Sorption Efficiency of Mordenite versus Zeolite-A at the Convergence of Experimental and Density Functionalized Evaluation. Journal of the Chinese Advanced Materials Society, 6, 691-705.
[95]  Liu, Y., Du, X., Wang, J., Yin, Y., Wang, B., Zhao, S., Li, N. and Li, C. (2018) High Efficient Detoxification of Mustard Gas Surrogate Based on Nanofibrous Fabric. Journal of Hazardous Materials, 347, 25-30.
https://doi.org/10.1016/j.jhazmat.2017.12.041
[96]  Florent, M., Gianna koudakis, D.A. and Bandosz, T.J. (2017) Mustard Gas Surrogate Interactions with Modified Porous Carbon Fabrics: Effect of Oxidative Treatment. Langmuir, 33, 11475-11483.
https://doi.org/10.1021/acs.langmuir.7b02047
[97]  Li, J.X., Jiang, B.Q., Liu, Y., Qiu, C.Q., Hu, J.J., Qian, G.R., Guo, W.S. and Ngo, H.H. (2017) Preparation and Adsorption Properties of Magnetic Chitosan Composite Adsorbent for Cu2+ Removal. Journal of Cleaner Production, 158, 51-58.
https://doi.org/10.1016/j.jclepro.2017.04.156
[98]  Sadeghi, M., Yekta, S. and Ghaedi, H. (2016) Decontamination of Chemical Warfare Sulfur Mustard Agent Simulant by ZnO Nanoparticles. International Nano Letters, 6, 161-171.
https://doi.org/10.1007/s40089-016-0183-x
[99]  Vaclav Stengl, M.S., Henych, J., Tolasz, J., Vomacka, P. and Ederer, J. (2016) Mesoporous Manganese Oxide for the Degradation of Organophosphates Pesticides. Journal of Materials Science, 51, 2634-2642.
https://doi.org/10.1007/s10853-015-9577-9
[100]  Sadeghi, M., Ghaedi, H., Yekta, S. and Babanezhad, E. (2016) Decontamination of Toxic Chemical Warfare Sulfur Mustard and Nerve Agent Simulants by NiO NPs/Ag-Clinoptilolite Zeolite Composite Adsorbent. Journal of Environmental Chemical Engineering, 4, 2990-3000.
https://doi.org/10.1016/j.jece.2016.06.008
[101]  Aono, H., Kaji, N., Itagaki, Y., Johan, E. and Matsue, N. (2016) Synthesis of Mordenite and Its Composite Material Using Chemical Reagents for Cs Decontamination. Journal of the Ceramic Society of Japan, 124, 617-623.
[102]  Dastafkan, K., Sadeghi, M. and Obeydavi, A. (2015) Manganese Dioxide Nanoparticles-Silver-Y Zeolite as a Nanocomposite Catalyst for the Decontamination Reactions of O, S-Diethyl Methyl Phosphonothiolate. International Journal of Environmental Science and Technology, 12, 905-918.
https://doi.org/10.1007/s13762-014-0701-1
[103]  Singh, V.V., Jurado-Sánchez, B., Sattayasamitsathit, S., Orozco, J., Li, J., Galarnyk, M., Fedorak, Y. and Wang, J. (2015) Multifunctional Silver-Exchanged Zeolite Micromotors for Catalytic Detoxification of Chemical and Biological Threats. Advanced Functional Materials, 25, 2147-2155.
[104]  Kumar, J.P., Ramacharyulu, P.V.R.K., Prasad, G.K., Srivastava, A.R. and Singh, B. (2015) Molecular Sieves Supported with Metal Oxide Nanoparticles: Synthesis, Characterization and Decontamination of Sulfur Mustard. Journal of Porous Materials, 22, 91-100.
https://doi.org/10.1007/s10934-014-9876-6
[105]  Khanday, W.A., Abdul Majid, S., Chandra Shekar, S. and Tomar, R. (2014) Dynamic Adsorption of DMMP over Synthetic Zeolite-Alpha. Arabian Journal of Chemistry, 7, 115-123.
https://doi.org/10.1016/j.arabjc.2013.06.026
[106]  Khanday, W.A., Abdul Majid, S., Chandra Shekar, S. and Tomar, R. (2013) Synthesis and Characterization of Various Zeolites and Study of Dynamic Adsorption of Dimethyl Methyl Phosphate over Them. Materials Research Bulletin, 48, 4679-4686.
https://doi.org/10.1016/j.materresbull.2013.08.003
[107]  Sharifi Alhashem, S.L. and Sadeghi, M. (2012) Preparation of Manganese Dioxide Nanoparticles/Zeolite AgY Composite and Investigation of its Reaction with 2-Chloro Ethyl Phenyl Sulfide and Dimethyl Methylphosphonate. Passive Defence Science and Technology, 2, 169-178.
[108]  Zhang, J., Li, X., White, J. and Dutta, P.K. (2012) Effects of Surface and Morphological Properties of Zeolite on Impedance Spectroscopy-Based Sensing Performance. Sensors, 12, 13284.
https://doi.org/10.3390/s121013284
[109]  Hudiono, Y.C., Miller, A.L., Gibson, P.W., Lafarge, A.L., Noble, R.D. and Gin, D.L. (2012) A Highly Breathable Organic/Inorganic Barrier Material that Blocks the Passage of Mustard Agent Simulants. Industrial & Engineering Chemistry Research, 51, 7453-7456.
https://doi.org/10.1021/ie202977e
[110]  Ji, X., Yao, W., Hu, Y., Ren, N., Zhou, J., Huang, Y. and Tang, Y. (2011) Adsorption and Desorption Characteristics of Nanozeolites as Adsorbent for Dimethyl Methylphosphonate. Sensors and Materials, 23, 303.
[111]  Nazari, B. and Jaafari, M. (2010) A New Method for the Synthesis of MgO Nanoparticles for the Destructive Adsorption of Organo-Phosphorus Compounds. Digest Journal of Nanomaterials and Biostructures, 5, 909-917.
[112]  Kaygun, A.K. and Akyil, S. (2007) Study of the Behaviour of Thorium Adsorption on PAN/Zeolite Composite Adsorbent. Journal of Hazardous Materials, 147, 357-362.
https://doi.org/10.1016/j.jhazmat.2007.01.020
[113]  Knagge, K., Johnson, M., Grassian, V.H. and Larsen, S.C. (2006) Adsorption and Thermal Reaction of DMMP in Nanocrystalline NaY. Langmuir, 22, 11077-11084.
https://doi.org/10.1021/la061341e
[114]  Wagner, G.W. and Bartram, P.W. (1999) Reactions of VX, HD, and Their Simulants with NaY and AgY Zeolites. Desulfurization of VX on AgY. Langmuir, 15, 8113-8118.
https://doi.org/10.1021/la990716b

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413