全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Facile Synthesis of Ag/TiO2 by Photoreduction Method and Its Degradation Activity of Methylene Blue under UV and Visible Light Irradiation

DOI: 10.4236/mrc.2020.91001, PP. 1-19

Keywords: Titanium Dioxide, Silver, Photocatalyst, Photoreduction, Photocatalytic Degradation of Methylene Blue

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of Ag/TiO2 with various Ag contents were prepared by photoreduction method. Commercial TiO2 from Evonik-Degussa was used as the catalyst. Ag was used as the cocatalyst. This facial synthesis method is cheap and easy. TiO2 was suspended in water with various concentrations of silver nitrate. The solution was illuminated by UV light for 36 h. Ag would deposit on the surface of TiO2. This method can deposit all Ag cation in the starting material on TiO2 after 36 h irradiation by UV light. X-ray diffraction, high resolution-TEM, and X-ray photoelectron spectroscopy were used to characterize the surface, morphology and chemical composition of the catalysts. Photocatalytic degradation of methylene blue in water on these catalysts was carried out under UV and visible light irradiation, respectively. The methylene blue concentration in water was measured by a UV-vis spectrophotometer. The results showed that the bulk structure of TiO2 did not change and some of Ag was incorporated into the surface of TiO2 lattice. The change in the electronic state of Ti on surface is attributed to the replacement of titanium atoms by silver atoms on the TiO2 surface structure which induced visible light response and enhanced the photocatalytic activity. 1 wt% Ag is the optimum loading to have high activity.

References

[1]  Sanzone, G., Zimbone, M., Cacciato, G., Ruffino, F., Carles, R., Privitera, V. and Grimaldi, M.G. (2018) Ag/TiO2 Nanocomposite for Visible Light-Driven Photocatalysis. Superlattices and Microstructures, 123, 394-402.
https://doi.org/10.1016/j.spmi.2018.09.028
[2]  Noreen, Z., Khalid, N.R., Abbasi, R., Jayed, S., Ahmad, I. and Bokhari, H. (2019) Visible Light Sensitive Ag/TiO2/Graphene Composite as a Potential Coating Material for Control of Campylobacter jejuni. Materials Science and Engineering: C, 98, 125-133.
https://doi.org/10.1016/j.msec.2018.12.087
[3]  Zhang, Y., Fu, F., Li, Y., Zhang, D. and Chen, Y. (2018) One-Step Synthesis of Ag@TiO2 Nanoparticles for Enhanced Photocatalytic Performance. Nanomaterials, 8, 1032-1042.
https://doi.org/10.3390/nano8121032
[4]  Chan, S.C. and Barteau, M.A. (2005) Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir, 21, 5588-5595.
https://doi.org/10.1021/la046887k
[5]  Moongraksathum, B. and Chen, Y.W. (2017) CeO2-TiO2 Mixed Oxide Thin Films with Enhanced Photocatalytic Degradation of Organic Pollutants. Journal of Sol-Gel Science and Technology, 82, 772-782.
https://doi.org/10.1021/la046887k
[6]  Moongraksathum, B. and Chen, Y.W. (2018) Anatase TiO2 Co-Doped with Silver and Ceria for Antibacterial Application. Catalysis Today, 310, 69-74.
https://doi.org/10.1016/j.cattod.2017.05.087
[7]  Moongraksathum, B., Shang, J.Y. and Chen, Y.W. (2018) Photocatalytic Antibacterial Effectiveness of Cu-Doped TiO2 Thin Film Prepared via Peroxo Sol-Gel Method. Catalysts, 8, 352-361.
https://doi.org/10.3390/catal8090352
[8]  Moongraksathum, B., Chien, M.Y. and Chen, Y.W. (2019) Antiviral and Antibacterial Effects of Silver-Doped TiO2 Prepared by the Peroxo Sol-Gel Method. Journal of Nanoscience and Nanotechnology, 19, 1-7.
https://doi.org/10.1166/jnn.2019.16615
[9]  Rather, R.A., Singh, R. and Pal, B. (2017) Visible and Direct Sunlight Induced H2 Production from Water by Plasmonic Ag-TiO2 Nanorods Hybrid Interface. Solar Energy Materials and Solar Cells, 160, 463-469.
https://doi.org/10.1016/j.solmat.2016.11.017
[10]  Liu, X., Iocozzia, J., Wang, Y., Cui, X., Chen, Y., Zhao, L., Li, Z. and Lin, Z. (2017) Noble Metal-Metal Oxide Nanohybrids with Tailored Nanostructures for Efficient Solar Energy Conversion, Photocatalysis and Environmental Remediation. Energy & Environmental Science, 10, 402-434.
https://doi.org/10.1039/C6EE02265K
[11]  Cao, C., Huang, J., Li, L., Zhao, C. and Yao, J. (2017) Highly Dispersed Ag/TiO2 via Adsorptive Self-Assembly for Bactericidal Application. RSC Advances, 7, 13347-13352.
https://doi.org/10.1039/C7RA00758B
[12]  Xie, Y., Huang, Z., Zhang, Z., Zhang, X., Wen, R., Liu, Y., Fang, M. and Wu, X. (2016) Controlled Synthesis and Photocatalytic Properties of Rhombic Dodecahedral Ag3PO4 with High Surface Energy. Applied Surface Science, 389, 56-66.
https://doi.org/10.1016/j.apsusc.2016.07.088
[13]  Jia, C., Yang, P., Li, J., Huang, B. and Matras-Postolek, K. (2016) Photocatalytic Activity Evolution of Different Morphological TiO2 Shells on Ag Nanowires. ChemCatChem, 8, 839-847.
https://doi.org/10.1002/cctc.201501045
[14]  Kenens, B., Chamtouri, M., Aubert, R., Miyakawa, K., Hayasaka, Y., Naiki, H., Watanabe, H., Inose, T., Fujita, Y., Lu, G., Masuhara, A. and Uji-I, H. (2016) Solvent-Induced Improvement of Au Photo-Deposition and Resulting Photo-Catalytic Efficiency of Au/TiO2. RSC Advances, 6, 97464-97468.
https://doi.org/10.1039/C6RA19372B
[15]  Rao, Y.N., Banerjee, D., Datta, A., Das, S.K. and Saha, A. (2016) Low Temperature Synthesis of Ag@anatase TiO2 Nanocomposites through Controlled Hydrolysis and Improved Degradation of Toxic Malachite Green under Both Ultra-Violet and Visible Light. RSC Advances, 6, 49083-49090.
https://doi.org/10.1039/C6RA05579F
[16]  Zhang, H., Tao, Z., Tang, Y., Yang, M. and Wang, G. (2016) One-Step Modified Method for a Highly Efficient Au-PANI@TiO2 Visible-Light Photocatalyst. New Journal of Chemistry, 40, 8587-8592.
https://doi.org/10.1039/C6NJ02408D
[17]  Devi, L.G. and Kavitha, R. (2016) A Review on Plasmonic Metal/TiO2 Composite for Generation, Trapping, Storing and Dynamic Vectorial Transfer of Photogenerated Electrons across the Schottky Junction in a Photocatalytic System. Applied Surface Science, 360, 601-622.
https://doi.org/10.1016/j.apsusc.2015.11.016
[18]  Wang, X., Wang, Z., Jiang, X., Tao, J., Gong, Z., Cheng, Y., Zhang, M., Yang, L., Lv, J., He, G. and Sun, Z. (2016) Silver-Decorated TiO2 Nanorod Array Films with Enhanced Photoelectrochemical and Photocatalytic Properties. Journal of the Electrochemical Society, 163, H943-H950.
https://doi.org/10.1149/2.0551610jes
[19]  Maparu, A.K., Ganvir, V. and Rai, B. (2015) Titania Nanofluids with Improved Photocatalytic Activity under Visible Light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 345-352.
https://doi.org/10.1016/j.colsurfa.2015.06.026
[20]  Zhu, Y., Yang, S., Cai, J., Meng, M. and Li, X. (2015) A Facile Synthesis of AgxAu1-x/TiO2 Photocatalysts with Tunable Surface Plasmon Resonance (SPR) Frequency Used for RhB Photodegradation. Materials Letters, 154, 163-166.
https://doi.org/10.1016/j.matlet.2015.04.091
[21]  Ma, J., Guo, S., Guo, X. and Ge, H. (2015) Modified Photodeposition of Uniform Ag Nanoparticles on TiO2 with Superior Catalytic and Antibacterial Activities. Journal of Sol-Gel Science and Technology, 75, 366-373.
https://doi.org/10.1007/s10971-015-3709-1
[22]  Wang, A., Yu, W., Fang, Y., Song, Y., Jia, D., Long, L., Cifuentes, M.P., Humphrey, M.P. and Zhang, C. (2015) Facile Hydrothermal Synthesis and Optical Limiting Properties of TiO2-Reduced Graphene Oxide Nanocomposites. Carbon, 89, 130-141.
https://doi.org/10.1016/j.carbon.2015.03.037
[23]  Wang, Z. and Zhu, Y. (2015) A Simple Plasma Reduction for Synthesis of Au and Pd Nanoparticles at Room Temperature. Chinese Journal of Chemical Engineering, 23, 1060-1063.
https://doi.org/10.1016/j.cjche.2014.09.055
[24]  Lu, Y., Zhang, Y., Zhi, Q., Wang, Q., Gittleson, F.S., Li, J. and Taylor, A.D. (2015) Enhanced Photoelectrochemical and Sensing Performance of Novel TiO2 Arrays to H2O2 Detection. Sensors and Actuators B: Chemical, 211, 111-115.
https://doi.org/10.1016/j.snb.2015.01.060
[25]  Ma, X., Guo, X., Zhang, Y. and Ge, H. (2014) Catalytic Performance of TiO2@Ag Composites Prepared by Modified Photodeposition Method. Chemical Engineering Journal, 258, 247-253.
https://doi.org/10.1016/j.cej.2014.06.120
[26]  Rodríguez, J.L., Valenzuela, M.A., Tiznado, H., Poznyak, T. and Flores, E. (2014) Synthesis of Nickel Oxide Nanoparticles Supported on SiO2 by Sensitized Liquid Phase Photodeposition for Applications in Catalytic Ozonation. Journal of Molecular Catalysis A: Chemical, 392, 39-49.
https://doi.org/10.1016/j.molcata.2014.04.028
[27]  Jiang, B., Peng, X., Qu, Y., Wang, H., Tian, C., Pan, Q., Li, M., Zhou, W. and Fu, H. (2014) A New Combustion Route to Synthesize Mixed Valence Vanadium Oxide Heterojunction Composites as Visible-Light-Driven Photocatalysts. ChemCatChem, 6, 2553-2559.
https://doi.org/10.1002/cctc.201402336
[28]  DuChene, J.S., Sweeny, B.C., Johnston-Peck, A.C., Su, D., Stach, E.A. and Wei, W.D. (2014) Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis. Angewandte Chemie, 126, 8021-8025.
https://doi.org/10.1002/ange.201404259
[29]  DuChene, J.S., Sweeny, B.C., Johnston-Peck, A.C., Su, D., Stach, E.A. and Wei, W.D. (2014) Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis. Angewandte Chemie International Edition, 53, 7887-7891.
https://doi.org/10.1002/anie.201404259
[30]  An, Y., Yang, L., Hou, J., Liu, Z. and Peng, B. (2014) Synthesis and Characterization of Carbon Nanotubes-Treated Ag@TiO2 Core-Shell Nanocomposites with Highly Enhanced Photocatalytic Performance. Optical Materials, 36, 1390-1395.
https://doi.org/10.1016/j.optmat.2014.03.038
[31]  Wang, H., Yang, K.F., Li, L., Bai, Y., Zheng, Z.J., Zhang, W.Q., Gao, Z.W. and Xu, L.W. (2014) Modulation of Silver-Titania Nanoparticles on Polymethylhydrosiloxane-Based Semi-Interpenetrating Networks for Catalytic Alkynylation of Trifluoromethyl Ketones and Aromatic Aldehydes in Water. ChemCatChem, 6, 580-591.
https://doi.org/10.1002/cctc.201300870
[32]  Lee, W.S., Park, Y.S. and Cho, Y.K. (2014) Significantly Enhanced Antibacterial Activity of TiO2 Nanofibers with Hierarchical Nanostructures and Controlled Crystallinity. The Analyst, 140, 616-622.
https://doi.org/10.1039/C4AN01682C
[33]  Khanna, A. and Shetty, V.K. (2014) Solar Light Induced Photocatalytic Degradation of Reactive Blue 220 (RB-220) Dye with Highly Efficient Ag@TiO2 Core-Shell Nanoparticles: A Comparison with UV Photocatalysis. Solar Energy, 99, 67-76.
https://doi.org/10.1016/j.solener.2013.10.032
[34]  Fageria, P., Gangopadhyay, S. and Pande, S. (2014) Synthesis of ZnO/Au and ZnO/Ag Nanoparticles and Their Photocatalytic Application Using UV and Visible Light. RSC Advances, 4, 24962-24972.
https://doi.org/10.1039/C4RA03158J
[35]  Wang, X., Choi, J., Mitchell, D.R.G., Truong, Y.B., Kyratzis, I.L. and Caruso, R.A. (2013) Enhanced Photocatalytic Activity: Macroporous Electrospun Mats of Mesoporous Au/TiO2 Nanofibers. ChemCatChem, 5, 2646-2654.
https://doi.org/10.1002/cctc.201300180
[36]  Sun, T., Liu, E., Fan, J., Hu, X., Wu, F., Hou, W., Yang, Y. and Kang, L. (2013) High Photocatalytic Activity of Hydrogen Production from Water over Fe Doped and Ag Deposited Anatase TiO2 Catalyst Synthesized by Solvothermal Method. Chemical Engineering Journal, 228, 896-906.
https://doi.org/10.1016/j.cej.2013.04.065
[37]  Snyder, A., Bo, Z., Moon, R., Rochet, J.C. and Stanciu, L. (2013) Reusable Photocatalytic Titanium Dioxide-Cellulose Nanofiber Films. Journal of Colloid and Interface Science, 399, 92-98.
https://doi.org/10.1016/j.jcis.2013.02.035
[38]  Gao, Y., Fang, P., Chen, F., Liu, Y., Liu, Z., Wang, D. and Dai, Y. (2013) Enhancement of Stability of N-Doped TiO2 Photocatalysts with Ag Loading. Applied Surface Science, 265, 796-801.
https://doi.org/10.1016/j.apsusc.2012.11.114
[39]  Gao, Y., Fang, P., Liu, Z., Chen, F., Liu, Y., Wang, D. and Dai, Y. (2013) A Facile One-Pot Synthesis of Layered Protonated Titanate Nanosheets Loaded with Silver Nanoparticles with Enhanced Visible-Light Photocatalytic Performance. Chemistry—An Asian Journal, 8, 204-211.
https://doi.org/10.1002/asia.201200768
[40]  Habibi, M.H. and Sheibani, R. (2013) Nanostructure Silver-Doped Zinc Oxide Films Coating on Glass Prepared by Sol-Gel and Photochemical Deposition Process: Application for Removal of Mercaptan. Journal of Industrial and Engineering Chemistry, 19, 161-165.
https://doi.org/10.1016/j.jiec.2012.07.019
[41]  Hebeish, A.A., Abdelhady, M.M. and Youssef, A.M. (2013) TiO2 Nanowire and TiO2 Nanowire Doped Ag-PVP Nanocomposite for Antimicrobial and Self-Cleaning Cotton Textile. Carbohydrate Polymers, 91, 549-559.
https://doi.org/10.1016/j.carbpol.2012.08.068
[42]  Lekelefac, C.A., Czermak, P. and Herrenbauer, M. (2013) Evaluation of Photocatalytic Active Coatings on Sintered Glass Tubes by Methylene Blue. International Journal of Photoenergy, 2013, Article ID: 614567.
https://doi.org/10.1155/2013/614567
[43]  Hari, M., Joseph, S.A., Mathew, S., Radhakrishnan, P. and Nampoori, V.P.N. (2012) Band-Gap Tuning and Nonlinear Optical Characterization of Ag:TiO2 Nanocomposites. Journal of Applied Physics, 112, Article ID: 074307.
https://doi.org/10.1063/1.4757025
[44]  Atla, S.B., Chen, C.C., Chen, C.Y., Lin, P.Y., Pan, W., Cheng, K.C., Huang, Y.M., Chang, Y.F. and Jean, J.S. (2012) Visible Light Response of Ag+/TiO2-Ti2O3 Prepared by Photodeposition under Foam Fractionation. Journal of Photochemistry and Photobiology A: Chemistry, 236, 1-8.
https://doi.org/10.1016/j.jphotochem.2012.03.008
[45]  Bano, I., Kumar, R.V. and Hameed, A. (2012) Influence of pH on the Preparation of Dispersed Ag-TiO2 Nanocomposite. Ionics, 18, 307-313.
https://doi.org/10.1007/s11581-011-0625-4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413