全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improving Local Priority Hysteresis Switching Logic Convergence

DOI: 10.4236/ica.2020.111001, PP. 1-14

Keywords: Adaptive Control, Hysteresis Constant, Convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Local priority hysteresis switching logic is associated with adaptive control convergence when using an infinite set of candidate parameters via constraints added to the switching scheme. In this paper, we reevaluate these constraints on the basis of the persistent excitation assumption. This makes room for the adaptive control to converge to its optimum, resulting in improved performance. Unconstrained local priority hysteresis switching logic is investigated, and global convergence conditions are proposed. This paper expands on the preliminary version of a conference paper [1] by adding numerical simulation examples to validate both the application and the advantage of the theory.

References

[1]  Alhajri, M. (2017) Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic. World Academy of Science, Engineering and Technology Conference, 572-576.
[2]  Drenick, R.F. and Shahbender, R.A. (1957) Adaptive Servomechanisms. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 76, 286-292.
https://doi.org/10.1109/TAI.1957.6367242
[3]  Patil, S., Sung, Y. and Safonov, M. (2014) Unfalsified Adaptive Control with Reset and Bumpless Transfer. 2014 IEEE 53rd Annual Conference on Decision and Control, Los Angeles, CA, 15-17 December 2014, 1264-1270.
https://doi.org/10.1109/CDC.2014.7039555
[4]  Manzar, M.N., Battistelli, G. and Sedigh, A.K. (2017) Input-Constrained Multi-Model Unfalsified Switching Control. Automatica, 83, 391-395.
https://doi.org/10.1016/j.automatica.2017.04.044
[5]  Sajjanshetty, K. and Safonov, M. (2014) Unfalsified Adaptive Control: Multi-Objective Cost-Detectable Cost Functions. 2014 IEEE 53rd Annual Conference on Decision and Control, Los Angeles, CA, 15-17 December 2014, 1283-1288.
https://doi.org/10.1109/CDC.2014.7039558
[6]  Lyrnpcropoulos, G., Borrello, M. and Margari, N. (2018) Multiple Model Adaptive Control of Valve Flow Using Event-Triggered Switching. 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, 21-24 August 2018, 121-126.
https://doi.org/10.1109/CCTA.2018.8511416
[7]  Narendra, K.S. and Esfandiari, K. (2018) Adaptive Control of Linear Periodic Systems Using Multiple Models. 2018 IEEE Conference on Decision and Control, Miami Beach, FL, 17-19 December 2018, 589-594.
https://doi.org/10.1109/CDC.2018.8619514
[8]  Wang, Q., Dai, W., Ma, X. and Yang, C. (2017) Multiple Models and Neural Networks Based Adaptive PID Decoupling Control of Mine Main Fan Switchover System. IET Control Theory & Applications, 12, 446-455.
https://doi.org/10.1049/iet-cta.2017.0701
[9]  Hespanha, J., Liberzon, D., Mors, S., Anderson, B., Brinsmead, T. and De Bruyne, F. (2001) Multiple Model Adaptive Control. Part 2: Switching. International Journal of Robust and Nonlinear Control, 11, 479-496.
https://doi.org/10.1002/rnc.594
[10]  Hespanha, J., Liberzon, D. and Morse, S. (2003) Hysteresis-Based Switching Algorithms for Supervisory Control of Uncertain Systems. Automatica, 39, 263-272.
https://doi.org/10.1016/S0005-1098(02)00241-8
[11]  Stefanovic, M. and Safonov, M. (2008) Safe Adaptive Switching Control: Stability and Convergence. IEEE Transactions on Automatic Control, 53, 2012-2021.
https://doi.org/10.1109/TAC.2008.929395
[12]  Alharashani, M. (2010) Relaxing Convergence Assumptions for Continuous Adaptive Control. Ph.D. Thesis, University of Southern California, Los Angeles, CA.
[13]  Morse, S., Mayne, D. and Goodwin, G. (1992) Applications of Hysteresis Switching in Parameter Adaptive Control. IEEE Transactions on Automatic Control, 37, 1343-1354.
https://doi.org/10.1109/9.159571
[14]  Middleton, R.H., Goodwin, G.C., Hill, D.J. and Mayne, D.Q. (1988) Design Issues in Adaptive Control. IEEE Transactions on Automatic Control, 33, 50-58.
https://doi.org/10.1109/9.360
[15]  Bertsekas, D. (1999) Nonlinear Programming. Athena Scientific, Belmont, MA.
[16]  Anderson, B. (1977) Exponential Stability of linear Equations Arising in Adaptive Identification. IEEE Transactions on Automatic Control, 22, 83-88.
https://doi.org/10.1109/TAC.1977.1101406
[17]  Åström, K. and Torsten, B. (1965) Numerical Identification of Linear Dynamic Systems from Normal Operating Records. IFAC Proceedings Volumes, 2, 96-111.
https://doi.org/10.1016/S1474-6670(17)69024-4
[18]  Åström, K. and Wittenmark, B. (2013) Adaptive Control. Courier Corporation, North Chelmsford, MA.
[19]  Na, J., Mahyuddin, M., Herrmann, G., Ren, X. and Barber, P. (2015) Robust Adaptive Finite-Time Parameter Estimation and Control for Robotic Systems. International Journal of Robust and Nonlinear Control, 25, 3045-3071.
https://doi.org/10.1002/rnc.3247
[20]  Cho, N., Shin, H., Kim, Y. and Tsourdos, A. (2018) Composite Model Reference Adaptive Control with Parameter Convergence under Finite Excitation. IEEE Transactions on Automatic Control, 63, 811-818.
https://doi.org/10.1109/TAC.2017.2737324
[21]  Narendra, K. and Annaswamy, A. (1987) Persistent Excitation in Adaptive Systems. International Journal of Control, 45, 127-160.
https://doi.org/10.1080/00207178708933715
[22]  Morse, S. (1996) Supervisory Control of Families of Linear Set-Point Controllers—Part I: Exact Matching. IEEE Transactions on Automatic Control, 41, 1413-1431.
https://doi.org/10.1109/9.539424
[23]  Morse, S. (1997) Supervisory Control of Families of Linear Set-Point Controllers—Part II: Robustness. IEEE Transactions on Automatic Control, 42, 1500-1515.
https://doi.org/10.1109/9.649687
[24]  Greenberg, M. (1975) Topology: A First Course. Prentice-Hall, Englewood Cliffs, NJ.
[25]  Morse, S. (1992) Towards a Unified Theory of Parameter Adaptive Control. II. Certainty Equivalence and Implicit Tuning. IEEE Transactions on Automatic Control, 37, 15-29.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413