全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design and Implementation of Step-Constant Tapered Slot Antennas for UWB Application

DOI: 10.4236/jst.2019.94008, PP. 91-100

Keywords: Antenna Gain, Voltage Standing Wave Ratio (VSWR), Step Constant Tapered Slot Antenna (STSA), Ultra Wideband (UWB), Reflection Coefficient

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the analytical design and high performance of step-constant tapered slot antenna (STSA) for ultra-wideband application. The return loss, radiation pattern, antenna gain, and level of cross polarization of this antenna are presented and analyzed. Utilizing Rogers (RO3006) substrate having a relative permittivity of 6.15, the proposed antenna provides the ultra-wideband (UWB) from 3.1 GHz to 10.6 GHz. It is observed that the return loss and gain are increased with increasing the step size. It has been observed from the simulation results incorporating CST microwave studio commercial software version 2015, the optimum return loss, directivity and gain are ?43 dB, 10.52 dBi and 10.20 dB, respectively, for 15 step size. Therefore, the newly proposed antenna will be a decent candidate for ultra-wideband application.

References

[1]  Charoensiri, Y., Thaiwiro, W. and Akkaraekthalin, P. (2017) Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Impedance Transformer. IEEE Conference on Antenna Measurements & Applications, 71, 251-260.
https://doi.org/10.1515/freq-2016-0131
[2]  Hossain, M., et al. (2019) Numerical Analysis and Design of Photonic Crystal Fiber Based Surface Plasmon Resonance Biosensor. Journal of Sensor Technology, 9, 27-34.
https://doi.org/10.4236/jst.2019.92003
[3]  Sakib, N., Hossain, B., Al-Tabatabaie, K.F., Mehedi, I.M., Hasan, T., Hossain, A. and Amiri, I.S. (2019) High Performance Dual Core D-Shape PCF-SPR Sensor Modeling Employing Gold Coat. Results in Physics, 15, Article ID: 102788.
https://doi.org/10.1016/j.rinp.2019.102788
[4]  Biplob, H., Mehedi, I.M., Moznuzzaman, M., Abdulrazak, L.F. and Hossain, A. (2019) High Performance Refractive Index SPR Sensor Modeling Employing Graphene Tri Sheets. Results in Physics, 15, Article ID: 102719.
https://doi.org/10.1016/j.rinp.2019.102719
[5]  Shushama, K.N., Rana, M.M., Inum, R. and Hossain, M.B. (2017) Graphene Coated Fiber Optic Surface Plasmon Resonance Biosensor for the DNA Hybridization Detection: Simulation Analysis. Optics Communications, 383, 186-190.
https://doi.org/10.1016/j.optcom.2016.09.015
[6]  Hossain, M.B. and Rana, M. (2016) Graphene Coated High Sensitive Surface Plasmon Resonance Biosensor for Sensing DNA Hybridization. Sensor Letters, 14, 145-152.
https://doi.org/10.1166/sl.2016.3596
[7]  Hossain, M.B. and Rana, M.M. (2016) DNA Hybridization Detection Based on Resonance Frequency Readout in Graphene on Au SPR Biosensor. Journal of Sensors, 2016, Article ID: 6070742.
https://doi.org/10.1155/2016/6070742
[8]  Hossain, B., Khan, M.M.R., Rahman, S., Badrudduza, S.S.B., Sabiha, M.M. and Rana, M. (2019) Graphene-MoS2-Au-TiO2-SiO2 Hybrid SPR Biosensor: A New Window for Formalin Detection. Journal of Materials and Applications, 8, 51-58.
https://doi.org/10.32732/jma.2019.8.2.51
[9]  Hossain, M.B., Rana, M.M., Abdulrazak, L.F., Mitra, S. and Rahman, M. (2019) Design and Analysis of Graphene-MoS2 Hybrid Layer Based SPR Biosensor with TiO2-SiO2 Nano Film for Formalin Detection: Numerical Approach. Optical and Quantum Electronics, 51, 195-207.
https://doi.org/10.1007/s11082-019-1911-z
[10]  Hossain, M.B., Rana, M.M., Abdulrazak, L.F. and Mitra, S. (2019) Graphene-MoS2 with TiO2-SiO2 Layers Based Surface Plasmon Resonance Biosensor: Numerical Development for Formalin Detection. Biochemistry and Biophysics Reports, 18, Article ID: 100639.
https://doi.org/10.1016/j.bbrep.2019.100639
[11]  Hossain, M.B., Akib, T.B.A., Abdulrazak, L.F. and Rana, M. (2019) Numerical Modeling of Graphene-Coated Fiber Optic Surface Plasmon Resonance Biosensor for BRCA 1 and BRCA 2 Genetic Breast Cancer Detection. Optical Engineering, 58, Article ID: 037104.
https://doi.org/10.1117/1.OE.58.3.037104
[12]  Islam, M.M., Islam, M., Shimul, Y.C., Rahman, A., Ruhe, A.A., Hassan, M., et al. (2019) FDTD Analysis Fiber Optic SPR Biosensor for DNA Hybridization: A Numerical Demonstration with Graphene. Journal of Materials and Applications, 8, 13-19.
https://doi.org/10.32732/jma.2019.8.1.13
[13]  Hossain, M.B., Islam, M., Abdulrazak, L.F., Rana, M.M., Akib, T.B.A. and Hassan, M. (2019) Graphene-Coated Optical Fiber SPR Biosensor for BRCA1 and BRCA2 Breast Cancer Biomarker Detection: A Numerical Design-Based Analysis. Photonic Sensors, 9, 1-13.
https://doi.org/10.1007/s13320-019-0556-7
[14]  Hossain, M.B., Hassan, M., Abdulrazak, L.F., Rana, M.M., Islam, M.M. and Rahman, M.S. (2019) Graphene-MoS2-Au-TiO2-SiO2 Hybrid SPR Biosensor for Formalin Detection: Numerical Analysis and Development. Advanced Materials Letters, 10, 656-662.
https://doi.org/10.5185/amlett.2019.0001
[15]  Hossain, B., Tasnim, T., Abdulrazak, L.F., Rana, M. and Islam, R. (2019) A Numerical Approach to Design the Kretschmann Configuration Based Refractive Index Graphene-MoS2 Hybrid Layers with TiO2-SiO2 Nano for Formalin Detection. Photonic Sensors, 1-13.
https://doi.org/10.1007/s13320-019-0566-5
[16]  Inum, R., Rana, M.M. and Shushama, K.N. (2017) Development of Graphene Based Tapered Slot Antennas for Ultra-Wideband Applications. Progress in Electromagnetics Research C, 79, 241-255.
https://doi.org/10.2528/PIERC17072611
[17]  The Federal Communications Commission (2007) Revision of Part 15 of the Commission’s Rules Regarding Ultra Wideband Transmission Systems. First Report and Order, FCC 03-33, Washington DC.
[18]  Lee, D.-H., Yang, H.-Y. and Cho, Y.-K. (2012) Tapered Slot Antenna with Band Notched Function for Ultra-Wideband Radios. IEEE Antennas and Wireless Propagation Letters, 11, 682-685.
https://doi.org/10.1109/LAWP.2012.2204718
[19]  Beada, J., Amin, M. and David, I. (2014) Microwave System for Head Imaging. IEEE Transactions on Instrumentation and Measurement, 63, 117-123.
https://doi.org/10.1109/TIM.2013.2277562
[20]  Yin, X., Su, Z., Hong, W. and Cui, T.J. (2005) An Ultra-Wideband Tapered Slot Antenna. 2005 IEEE Antennas and Propagation Society International Symposium, Washington DC, 3-8 July 2005, 516-519.
[21]  Gibson, P.J. (1979) The Vivaldi Aerial. 1979 9th European Microwave Conference, Brighton, 17-20 September 1979, 101-105.
https://doi.org/10.1109/EUMA.1979.332681
[22]  Nand Mahapatra, P.S. (1979) A Novel MIC Slot-Line Antenna. 1979 9th European Microwave Conference, Brighton, 17-20 September 1979, 120-124.
[23]  Unadkat, V., Dwivedi, V.V., Jani, R. and Thanki, R. (2013) Design of Corrugated Linearly Tapered Slot Antenna for Wireless Apps. LAP Lambert Academic Publishing, Mauritius, 104.
[24]  Asif, S.M., Iftikhar, A., Braaten, B.D. and Khan, M.S. (2016) Design of an Ultra-Wideband Antenna Using Flexible Graphene-Based Conductor Sheets. IEEE International Symposium on Antennas and Propagation, Fajardo, Puerto Rico, 26 June-1 July 2016, 1863-1864.
https://doi.org/10.1109/APS.2016.7696638
[25]  Vignesh, N., Kumar, G.A.S. and Brindha, R. (2014) Design and Development of a Tapered Slot Vivaldi Antenna for Ultra-Wide Band Application. International Journal of Advanced Research in Computer Science and Software Engineering, 4, 174-178.
[26]  Azim, R., Islam, M.T. and Misran, N. (2011) Compact Tapered-Shape Slot Antenna for UWB Applications. IEEE Antennas and Wireless Propagation Letters, 10, 1190-1193.
https://doi.org/10.1109/LAWP.2011.2172181
[27]  Jiang, Y., Yuan, R., Gao, X., Wang, J., Li, S. and Lin, Y. (2016) An Ultra-Wideband Pattern Reconfigurable Antenna Based on Graphene Coating. Chinese Physics B, 25, 1-7.
https://doi.org/10.1088/1674-1056/25/11/118402

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413