全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biomass Cogeneration Technologies: A Review

DOI: 10.4236/jsbs.2020.101001, PP. 1-15

Keywords: Cogeneration, Biomass, CHP, Ericsson Motor, ORC, Steam Turbine, Sterling Motor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40 - 50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass, etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, we present the different cogeneration systems to provide electrical power and heating for isolated communities. It has been found that the steam turbine process is the most relevant for biomass cogeneration plants for its high efficiency and technological maturity. The future of CHP plants depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

References

[1]  Kjärstad, J. and Johnsson, F. (2016) The Role of Biomass to Replace Fossil Fuels in a Regional Energy System—The Case of West Sweden. Thermal Science, 20, 1023-1036.
https://doi.org/10.2298/TSCI151216113K
[2]  Balat, M. and Ayar, G.J.E.S. (2005) Biomass Energy in the World, Use of Biomass and Potential Trends. Energy Sources, 27, 931-940.
https://doi.org/10.1080/00908310490449045
[3]  Parikka, M. (2004) Global Biomass Fuel Resources. Biomass and Bioenergy, 27, 613-620.
https://doi.org/10.1016/j.biombioe.2003.07.005
[4]  Wielgosiński, G., Łechtańska, P. and Namiecińska, O. (2017) Emission of Some Pollutants from Biomass Combustion in Comparison to Hard Coal Combustion. Journal of the Energy Institute, 90, 787-796.
https://doi.org/10.1016/j.joei.2016.06.005
[5]  Demirbaş, A. (2001) Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals. Energy Conversion and Management, 42, 1357-1378.
https://doi.org/10.1016/S0196-8904(00)00137-0
[6]  Kan, T., Strezov, V. and Evans, T.J. (2016) Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renewable and Sustainable Energy Reviews, 57, 1126-1140.
https://doi.org/10.1016/j.rser.2015.12.185
[7]  Bridgwater, A.V., Toft, A.J. and Brammer, J.G. (2002) A Techno-Economic Comparison of Power Production by Biomass Fast Pyrolysis with Gasification and Combustion. Renewable and Sustainable Energy Reviews, 6, 181-246.
https://doi.org/10.1016/S1364-0321(01)00010-7
[8]  Badin, J. and Kirschner, J.J.R.E.W. (1998) Biomass Greens US Power Production. 1, 40-42, 44.
[9]  Toor, S.S., Rosendahl, L. and Rudolf, A. (2011) Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies. Energy, 36, 2328-2342.
https://doi.org/10.1016/j.energy.2011.03.013
[10]  Liu, Q., Chmely, S.C. and Abdoulmoumine, N. (2017) Biomass Treatment Strategies for Thermochemical Conversion. Energy & Fuels, 31, 3525-3536.
https://doi.org/10.1021/acs.energyfuels.7b00258
[11]  Strzalka, R., Erhart, T.G. and Eicker, U. (2013) Analysis and Optimization of a Cogeneration System Based on Biomass Combustion. Applied Thermal Engineering, 50, 1418-1426.
https://doi.org/10.1016/j.applthermaleng.2011.12.039
[12]  Demirbas, A. (2005) Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues. Progress in Energy and Combustion Science, 31, 171-192.
https://doi.org/10.1016/j.pecs.2005.02.002
[13]  Zhou, J., et al. (2017) Biomass Direct Combustion Technology. In: Bioenergy: Principles and Technologies, DE Gruyter, Berlin, Germany, 101-144.
[14]  McKendry, P. (2002) Energy Production from Biomass (Part 2): Conversion Technologies. Bioresource Technology, 83, 47-54.
https://doi.org/10.1016/S0960-8524(01)00119-5
[15]  Yin, C., Rosendahl, L.A. and Kær, S.K. (2008) Grate-Firing of Biomass for Heat and Power Production. Progress in Energy and Combustion Science, 34, 725-754.
https://doi.org/10.1016/j.pecs.2008.05.002
[16]  Gokcol, C., et al. (2009) Importance of Biomass Energy as Alternative to Other Sources in Turkey. Energy Policy, 37, 424-431.
https://doi.org/10.1016/j.enpol.2008.09.057
[17]  Thompson, D.A.W. (2008) The Biomass Assessment Handbook—Bioenergy for a Sustainable Environment, Frank Rosillo-Calle, Peter de Groot, Sarah L Hemstock, Jeremy Woods (Eds.), Earthscan, Macmillan Distribution (MDL) (2006), pp. 244, Hardback £49.95, ISBN: 1-8440-7285-1. Fuel, 87, 1005.
https://doi.org/10.1016/j.fuel.2007.05.017
[18]  Dentice d’Accadia, M., et al. (2003) Micro-Combined Heat and Power in Residential and Light Commercial Applications. Applied Thermal Engineering, 23, 1247-1259.
https://doi.org/10.1016/S1359-4311(03)00030-9
[19]  Dong, L., Liu, H. and Riffat, S. (2009) Development of Small-Scale and Micro-Scale Biomass-Fuelled CHP Systems: A Literature Review. Applied Thermal Engineering, 29, 2119-2126.
https://doi.org/10.1016/j.applthermaleng.2008.12.004
[20]  Houwing, M., Negenborn, R.R. and De Schutter, B.J. (2011) Demand Response with Micro-CHP Systems. Proceedings of the IEEE, 99, 200-213.
https://doi.org/10.1109/JPROC.2010.2053831
[21]  Sartor, K., Quoilin, S. and Dewallef, P. (2014) Simulation and Optimization of a CHP Biomass Plant and District Heating Network. Applied Energy, 130, 474-483.
https://doi.org/10.1016/j.apenergy.2014.01.097
[22]  Varun, Bhat, I.K. and Prakash, R. (2009) LCA of Renewable Energy for Electricity Generation Systems—A Review. Renewable and Sustainable Energy Reviews, 13, 1067-1073.
https://doi.org/10.1016/j.rser.2008.08.004
[23]  Lund, H., et al. (2010) The Role of District Heating in Future Renewable Energy Systems. Energy, 35, 1381-1390.
https://doi.org/10.1016/j.energy.2009.11.023
[24]  Torchio, M.F., et al. (2009) Merging of Energy and Environmental Analyses for District Heating Systems. Energy, 34, 220-227.
https://doi.org/10.1016/j.energy.2008.01.012
[25]  Perry, S., Klemeš, J. and Bulatov, I. (2008) Integrating Waste and Renewable Energy to Reduce the Carbon Footprint of Locally Integrated Energy Sectors. Energy, 33, 1489-1497.
https://doi.org/10.1016/j.energy.2008.03.008
[26]  Lund, H., Šiupšinskas, G. and Martinaitis, V. (2005) Implementation Strategy for Small CHP-Plants in a Competitive Market: The Case of Lithuania. Applied Energy, 82, 214-227.
https://doi.org/10.1016/j.apenergy.2004.10.013
[27]  Uddin, S.N. and Barreto, L. (2007) Biomass-Fired Cogeneration Systems with CO2 Capture and Storage. Renewable Energy, 32, 1006-1019.
https://doi.org/10.1016/j.renene.2006.04.009
[28]  Bianchi, M., et al. (2006) Cogeneration from Poultry Industry Wastes: Indirectly Fired Gas Turbine Application. Energy, 31, 1417-1436.
https://doi.org/10.1016/j.energy.2005.05.028
[29]  Raj, N.T., Iniyan, S. and Goic, R. (2011) A Review of Renewable Energy Based Cogeneration Technologies. Renewable and Sustainable Energy Reviews, 15, 3640-3648.
https://doi.org/10.1016/j.rser.2011.06.003
[30]  GmbH, B. Description of the Biomass CHP Technology Based on a Steam Turbine Process.
https://www.bios-bioenergy.at/en/electricity-from-biomass/steam-turbine.html
[31]  Kehlhofer, R., et al. (2009) Combined-Cycle Gas & Steam Turbine Power Plants. Pennwell Books, Tulsa.
[32]  Wu, D.W. and Wang, R.Z. (2006) Combined Cooling, Heating and Power: A Review. Progress in Energy and Combustion Science, 32, 459-495.
https://doi.org/10.1016/j.pecs.2006.02.001
[33]  OPET CHP/DHC Report 12, 2004.
https://pdfs.semanticscholar.org/5ff9/43ba652c1597ef2f7e2d1c44b8a45520fad0.pdf
[34]  Quoilin, S., et al. (2013) Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems. Renewable and Sustainable Energy Reviews, 22, 168-186.
https://doi.org/10.1016/j.rser.2013.01.028
[35]  Li, P., et al. (2019) Comparative Analysis of an Organic Rankine Cycle with Different Turbine Efficiency Models Based on Multi-Objective Optimization. Energy Conversion and Management, 185, 130-142.
https://doi.org/10.1016/j.enconman.2019.01.117
[36]  Pethurajan, V., et al. (2018) Issues, Comparisons, Turbine Selections and Applications: An Overview in Organic Rankine Cycle. Energy Conversion and Management, 166, 474-488.
https://doi.org/10.1016/j.enconman.2018.04.058
[37]  Kazemi, N. and Samadi, F. (2016) Thermodynamic, Economic and Thermo-Economic Optimization of a New Proposed Organic Rankine Cycle for Energy Production from Geothermal Resources. Energy Conversion and Management, 121, 391-401.
https://doi.org/10.1016/j.enconman.2016.05.046
[38]  Xu, G., et al. (2015) Performance Evaluation of a Direct Vapor Generation Supercritical ORC System Driven by Linear Fresnel Reflector Solar Concentrator. Applied Thermal Engineering, 80, 196-204.
https://doi.org/10.1016/j.applthermaleng.2014.12.071
[39]  Uris, M., Linares, J.I. and Arenas, E. (2017) Feasibility Assessment of an Organic Rankine Cycle (ORC) Cogeneration Plant (CHP/CCHP) Fueled by Biomass for a District Network in Mainland Spain. Energy, 133, 969-985.
https://doi.org/10.1016/j.energy.2017.05.160
[40]  Javanshir, A. and Sarunac, N.J. (2017) Thermodynamic Analysis of a Simple Organic Rankine Cycle. Energy, 118, 85-96.
https://doi.org/10.1016/j.energy.2016.12.019
[41]  Natural Resources Canada (2017) Cycle organique de Rankine: Une technologie qui mérite d’être reproduite. Natural Resources Canada, Ottawa. 1 ressource en ligne (2 pages non numérotées).
[42]  Peretti, I. (2008) Application of ORC Units in Sawmills-Technical-Economic Considerations. Turboden.
[43]  Sipilä, K., et al. (2005) Small-Scale Biomass CHP Plant and District Heating.
[44]  Quoilin, S., Declaye, S. and Lemort, V. (2010) Expansion Machine and Fluid Selection for the Organic Rankine Cycle. 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Antalya, Turkey, 19-21 July 2010, 19-21.
[45]  Obernberger, I. and Thek, G. (2008) Combustion and Gasification of Solid Biomass for Heat and Power Production in Europe-State-of-the-Art and Relevant Future Developments. 8th European Conference on Industrial Furnaces and Boilers, Vilamoura, 25-28 March 2008, 978.
[46]  Uris, M., Linares, J.I. and Arenas, E. (2014) Techno-Economic Feasibility Assessment of a Biomass Cogeneration Plant Based on an Organic Rankine Cycle. Renewable Energy, 66, 707-713.
https://doi.org/10.1016/j.renene.2014.01.022
[47]  Liu, H., Shao, Y. and Li, J. (2011) A Biomass-Fired Micro-Scale CHP System with Organic Rankine Cycle (ORC): Thermodynamic Modelling Studies. Biomass and Bioenergy, 35, 3985-3994.
https://doi.org/10.1016/j.biombioe.2011.06.025
[48]  Saleh, B., et al. (2007) Working Fluids for Low-Temperature Organic Rankine Cycles. Energy, 32, 1210-1221.
https://doi.org/10.1016/j.energy.2006.07.001
[49]  Vankeirsbilck, I., et al. (2011) Organic Rankine Cycle as Efficient Alternative to Steam Cycle for Small Scale Power Generation.
[50]  Harrison, J. and On, E. (2011) Stirling Engine Systems for Small and Micro Combined Heat and Power (CHP) Applications. In: Beith, R., Ed., Small and Micro Combined Heat and Power (CHP) Systems, Woodhead Publishing, Cambridge, 179-205.
https://doi.org/10.1533/9780857092755.2.179
[51]  Marinitsch, G., et al. (2005) Development of a Hot Gas Heat Exchanger and a Cleaning System for a 35kWel Hermetic Four Cylinder Stirling Engine for Solid Biomass Fuels. Proceedings of the International Stirling Engine Conference, Durham, 7-9 September 2005, 144-155.
[52]  Varbanov, P.S. and Klemeš, J.J. (2011) Small and Micro Combined Heat and Power (CHP) Systems for the Food and Beverage Processing Industries. In: Beith, R., Ed., Small and Micro Combined Heat and Power (CHP) Systems, Woodhead Publishing, Cambridge, 395-426.
https://doi.org/10.1533/9780857092755.3.395
[53]  Thombarse, D.G. (2008) Stirling Engine: Micro-CHP System for Residential Application. In: Buschow, K.H.J., et al., Eds., Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 1-8.
https://doi.org/10.1016/B978-008043152-9.02194-1
[54]  Ebrahimi, M. and Keshavarz, A. (2015) CCHP Technology. In: Ebrahimi, M. and Keshavarz, A., Eds., Combined Cooling, Heating and Power, Elsevier, Boston, 35-91.
https://doi.org/10.1016/B978-0-08-099985-2.00002-0
[55]  Alanne, K., et al. (2010) Techno-Economic Assessment and Optimization of Stirling Engine Micro-Cogeneration Systems in Residential Buildings. Energy Conversion and Management, 51, 2635-2646.
https://doi.org/10.1016/j.enconman.2010.05.029
[56]  De Paepe, M., et al. (2006) Micro-CHP Systems for Residential Applications. Energy Conversion and Management, 47, 3435-3446.
https://doi.org/10.1016/j.enconman.2005.12.024
[57]  Alanne, K. and Saari, A.J. (2004) Sustainable Small-Scale CHP Technologies for Buildings: The Basis for Multi-Perspective Decision-Making. Renewable and Sustainable Energy Reviews, 8, 401-431.
https://doi.org/10.1016/j.rser.2003.12.005
[58]  Alanne, K. and Saari, A.J. (2006) Distributed Energy Generation and Sustainable Development. Renewable and Sustainable Energy Reviews, 10, 539-558.
https://doi.org/10.1016/j.rser.2004.11.004
[59]  Peacock, A. and Newborough, M. (2005) Impact of Micro-CHP Systems on Domestic Sector CO2 Emissions. Applied Thermal Engineering, 25, 2653-2676.
https://doi.org/10.1016/j.applthermaleng.2005.03.015
[60]  Breeze, P. (2018) Chapter 4 Piston Engine Combined Heat and Power Systems. In: Breeze, P., Ed., Combined Heat and Power, Academic Press, Cambridge, 33-40.
https://doi.org/10.1016/B978-0-12-812908-1.00004-3
[61]  Li, T., et al. (2012) Development and Test of a Stirling Engine Driven by Waste Gases for the Micro-CHP System. Applied Thermal Engineering, 33-34, 119-123.
https://doi.org/10.1016/j.applthermaleng.2011.09.020
[62]  Conroy, G., et al. (2013) Validated Dynamic Energy Model for a Stirling Engine μ-CHP Unit Using Field Trial Data from a Domestic Dwelling. Energy and Buildings, 62, 18-26.
https://doi.org/10.1016/j.enbuild.2013.01.022
[63]  bioenergiesysteme. Description de la technologie de cogénération à la biomasse basée sur le moteur Stirling.
https://www.bios-bioenergy.at/en/electricity-from-biomass/stirling-engine.html
[64]  Bonnet, S. (2005) Moteurs thermiques à apport de chaleur externe: étude d’un moteur STIRLING et d’un moteur ERICSSON. Université de Pau et des Pays de l’Adour.
[65]  Creyx, M., et al. (2014) Modélisation des performances d’un moteur Ericsson à cycle de Joule ouvert. Revista Termotehnica, 1, 64-70.
[66]  Quintanilla, M., et al. (2018) Modélisation thermodynamique d’un moteur Ericsson en cycle ouvert.
[67]  Hachem, H., et al. (2015) Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine. Entropy, 17, 7331-7348.
https://doi.org/10.3390/e17117331
[68]  Creyx, M., et al. (2013) Energetic Optimization of the Performances of a Hot Air Engine for Micro-CHP Systems Working with a Joule or an Ericsson Cycle. Energy, 49, 229-239.
https://doi.org/10.1016/j.energy.2012.10.061
[69]  Lontsi, F., et al. (2013) Dynamic Simulation of a Small Modified Joule Cycle Reciprocating Ericsson Engine for Micro-Cogeneration Systems. Energy, 63, 309-316.
https://doi.org/10.1016/j.energy.2013.10.061
[70]  Bonnet, S., Alaphilippe, M. and Stouffs, P. (2005) Energy, Exergy and Cost Analysis of a Micro-Cogeneration System Based on an Ericsson Engine. International Journal of Thermal Sciences, 44, 1161-1168.
https://doi.org/10.1016/j.ijthermalsci.2005.09.005
[71]  Marquet, L.D. (2011) The Ericsson Engine: A Technology to Favor.
http://energie.promes.cnrs.fr/IMG/pdf/08-1_-_Pascal_Stouffs_-_Moteur_Ericsson.pdf

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413