全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Environmentally Friendly Syntheses of Imines Applying the Pressure Reduction Technique: Reaction Cases of Less Reactive Amines and Studies by Computational Chemistry

DOI: 10.4236/gsc.2020.101001, PP. 1-17

Keywords: Solvent-Free, Catalyst-Free, Pressure Reduction Technique, Imine, Computational Chemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently, the development of environmentally friendly syntheses of imine derivatives, which were attracting great attention for their reactivity and structure in various fields, progressed rapidly because the concept of green chemistry had deeply penetrated into society. In our previous work, we had reported new synthetic methods of imine derivatives using some active amines under solvent- and catalyst-free reaction conditions. This synthetic reaction proceeded smoothly and target compounds were obtained in excellent yields. In this system, when less reactive amines were used as substrates, the synthetic reaction was not finished in the short reaction time, and the corresponding compounds were given in moderate yields. In order to solve this point, we tried to improve the reaction conditions of this method. Through this improvement, it was found that pure target compounds could be obtained in excellent yields by using 1.1 equivalents of less reactive amines to aldehydes and extending the reaction time compared with our previous work. In this paper, we will introduce the detail of this study, and also report the result of the investigation of the reaction property by computational chemistry.

References

[1]  Hashiguchi, S., Uematsu, N. and Noyori, R. (1997) Asymmetric Reduction of Imines. Journal of Synthetic Organic Chemistry, 55, 99-109.
https://doi.org/10.5059/yukigoseikyokaishi.55.99
[2]  Mao, J. and Baker, D.C. (1999) A Chiral Rhodium Complex for Rapid Asymmetric Transfer Hydrogenation of Imines with High Enantioselectivity. Organic Letters, 1, 841-843.
https://doi.org/10.1021/ol990098q
[3]  Mrsic, N., Minnaard, A.J., Feringa, B.L. and de Vries, J.G. (2009) Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation of N-Aryl Imines. Journal of the American Chemical Society, 131, 8358-8359.
https://doi.org/10.1021/ja901961y
[4]  Han, Z., Wang, Z., Zhang, X. and Ding, K. (2009) Spiro[4,4]-1,6-nonadiene-Based Phosphine-Oxazoline Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of Ketimines. Angewandte Chemie, International Edition, 48, 5345-5349.
https://doi.org/10.1002/anie.200901630
[5]  Hou, G., Tao, R., Sun, Y., Zhang, X. and Gosselin, F. (2010) Iridium-Monodentate Phosphoramidite-Catalyzed Asymmetric Hydrogenation of Substituted Benzophenone N-H Imines. Journal of the American Chemical Society, 132, 2124-2125.
https://doi.org/10.1021/ja909583s
[6]  Baeza, A. and Pfaltz, A. (2010) Iridium-Catalyzed Asymmetric Hydrogenation of Imines. Chemistry—A European Journal, 16, 4003-4009.
https://doi.org/10.1002/chem.200903418
[7]  Boehnke, N., Cam, C., Bat, E., Segura, T. and Maynard, H.D. (2015) Imine Hydrogels with Tunable Degradability for Tissue Engineering. Biomacromolecules, 16, 2101-2108.
https://doi.org/10.1021/acs.biomac.5b00519
[8]  Flynn, S.R., Metters, O.J., Manners, I. and Wass, D.F. (2016) Zirconium-Catalyzed Imine Hydrogenation via a Frustrated Lewis Pair Mechanism. Organometallics, 35, 847-850.
https://doi.org/10.1021/acs.organomet.6b00027
[9]  Shrestha, B., Basnet, P., Dhungana, R.K., KC, S., Thapa, S., Sears, J.M. and Giri, R. (2017) Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles. Journal the American Chemical Society, 139, 10653-10656.
https://doi.org/10.1021/jacs.7b06340
[10]  Lauer, J.C., Zhang, W.-S., Rominger, F., Schröder, R.R. and Mastalerz, M. (2018) Shape-Persistent [4+4] Imine Cages with a Truncated Tetrahedral Geometry. Chemistry—A European Journal, 24, 1816-1820.
https://doi.org/10.1002/chem.201705713
[11]  Peng, Y., Fan, Y.-H., Li, S.-Y., Li, B., Xue, J. and Deng, Q.-H. (2019) Iron-Catalyzed Nitrene Transfer Reaction of 4-Hydroxystilbenes with Aryl Azides: Synthesis of Imines via C=C Bond Cleavage. Organic Letters, 21, 8389-8394.
https://doi.org/10.1021/acs.orglett.9b03160
[12]  Eddahmi, M., Moura, N.M.M., Bouissane, L., Faustino, M.A.F., Cavaleiro, J.A.S., Paz, F.A.A., Mendes, R.F., Figueiredo, J., Carvalho, J., Cruz, C., Neves, M.G.P.M.S. and Rakib, E.M. (2019) Synthesis and Biological Evaluation of New Functionalized Nitroindazolylacetonitrile Derivatives. ChemistrySelect, 4, 14335-14342.
https://doi.org/10.1002/slct.201904344
[13]  Youn, S.W. and Kim, Y.H. (2016) Pd(II)/Ag(I)-Promoted One-Pot Synthesis of Cyclic Ureas from (Hetero)Aromatic Amines and Isocyanates. Organic Letters, 18, 6140-6143.
https://doi.org/10.1021/acs.orglett.6b03151
[14]  Riemer, D., Schilling, W., Goetz, A., Zhang, Y., Gehrke, S., Tkach, I., Hollóczki, O. and Das, S. (2018) CO2-Catalyzed Efficient Dehydrogenation of Amines with Detailed Mechanistic and Kinetic Studies. ACS Catalysis, 8, 11679-11687.
https://doi.org/10.1021/acscatal.8b03059
[15]  Qin, J., Long, Y., Wu, W., Zhang, W., Gao, Z. and Ma, J. (2019) Amorphous Fe2O3 Improved [O] Transfer Cycle of Ce4+/Ce3+ in CeO2 for Atom Economy Synthesis of Imines at Low Temperature. Journal of Catalysis, 371, 161-174.
https://doi.org/10.1016/j.jcat.2019.01.032
[16]  Yu, J., Shen, M. and Lu, M. (2015) Aerobic Oxidative Synthesis of 2-Arylbenzimidazoles, 2-Arylbenzoxazoles, and 2-Arylbenzothiazoles from Arylmethanols or Arylmethylamines Catalyzed by Fe(III)/TEMPO under Solvent-Free Conditions. Journal of the Iranian Chemical Society, 12, 771-778.
https://doi.org/10.1007/s13738-014-0537-0
[17]  Perez-Ruiz, R., Saez, J.A., Jimenez, M.C. and Miranda, M.A. (2014) Cycloreversion of β-Lactams via Photoinduced Electron Transfer. Organic & Biomolecular Chemistry, 12, 8428-8432.
https://doi.org/10.1039/C4OB01416B
[18]  Pedrajas, E., Sorribes, I., Junge, K., Beller, M. and Llusar, R. (2017) Selective Reductive Amination of Aldehydes from Nitro Compounds Catalyzed by Molybdenum Sulfide Clusters. Green Chemistry, 19, 3764-3768.
https://doi.org/10.1039/C7GC01603D
[19]  Bigelow, L.A. and Eatough, H. (1928) Benzalaniline. Organic Syntheses, 8, 22-23.
https://doi.org/10.15227/orgsyn.008.0022
[20]  Wang, G.-W. (2013) Mechanochemical Organic Synthesis. Chemical Society Reviews, 42, 7668-7700.
https://doi.org/10.1039/c3cs35526h
[21]  Hernandez, J.G., Avila-Ortiz, C.G. and Juaristi, E. (2014) Useful Chemical Activation Alternatives in Solvent-Free Organic Reactions. In: Knochel, P. and Molander, G.A., Eds., Comprehensive Organic Synthesis, 2nd Edition, Vol. 9, Elsevier B.V., Amsterdam, 287-314.
https://doi.org/10.1016/B978-0-08-097742-3.00935-6
[22]  Perin, G., Alves, D., Jacob, R.G., Barcellos, A.M., Soares, L.K. and Lenardao, E.J. (2016) Synthesis of Organochalcogen Compounds Using Non-Conventional Reaction Media. ChemistrySelect, 1, 205-258.
https://doi.org/10.1002/slct.201500031
[23]  Do, J.-L. and Friscic, T. (2017) Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry. Synlett, 28, 2066-2092.
https://doi.org/10.1055/s-0036-1590854
[24]  Suzuki, S., Sakaki, S., Ishizuka, S., Nishino, T., Ito, H., Nonaka, R., Noike, M., Kodama, T., Nozaka, H., Sato, T., Agematsu, H., Maruyama, K., Oyamada, S., Kuroishi, T., Sasaki, K., Yagawa, K., Yoshioka, M. and Yokoyama, Y. (2018) Efficient Solvent- and Catalyst-Free Syntheses of Imine Derivatives Applying the Pressure Reduction Technique: Remarkable Change of the Reaction Rate with the Phase Transition. Green and Sustainable Chemistry, 8, 167-179.
[25]  Suzuki, S., Ito, H., Ishizuka, S., Nonaka, R., Noike, M., Kodama, T., Funaki, K., Taguchi, M., Kagaya, T., Sato, S., Redler, G. and Yokoyama, Y. (2019) Perfect Solvent- and Catalyst-Free Syntheses of Imine Derivatives Using the Pressure Reduction Technique. Green and Sustainable Chemistry, 9, 105-118.
https://doi.org/10.4236/gsc.2019.94008
[26]  Koshima, H. (2005) Microwave-Assisted Solvent-Free Organic Synthesis. Fine Chemical, 34, 27-32.
[27]  Pistara, V., Rescifina, A., Chiacchio, M.A. and Corsaro, A. (2014) Use of Microwave Heating in the Synthesis of Heterocycles from Carbohydrates. Current Organic Chemistry, 18, 417-445.
https://doi.org/10.2174/13852728113176660146
[28]  Maddila, S., Jonnalagadda, S.B., Gangu, K.K. and Maddila, S.N. (2017) Recent Advances in the Synthesis of Pyrazole Derivatives Using Multicomponent Reactions. Current Organic Synthesis, 14, 634-653.
https://doi.org/10.2174/1570179414666161208164731
[29]  Hehre, W.J. (1976) Ab Initio Molecular Orbital Theory. Accounts of Chemical Research, 9, 399-406.
https://doi.org/10.1021/ar50107a003
[30]  Becke, A.D. (1993) A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics, 98, 1372-1377.
https://doi.org/10.1063/1.464304
[31]  Becke, A.D. (1997) Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. The Journal of Chemical Physics, 107, 8554-8560.
https://doi.org/10.1063/1.475007
[32]  Becke, A.D. (1998) A New Inhomogeneity Parameter in Density-Functional Theory. The Journal of Chemical Physics, 109, 2092-2098.
https://doi.org/10.1063/1.476722
[33]  Lin, C.Y., George, M.W. and Gill, P.M.W. (2004) EDF2: A Density Functional for Predicting Molecular Vibrational Frequencies. Australian Journal of Chemistry, 57, 365-370.
https://doi.org/10.1071/CH03263
[34]  Renault, S., Bertrand, S., Carreaux, F. and Bazureau, J.P. (2007) Parallel Solution-Phase Synthesis of 2-alkylthio-5-arylidene-3,5-dihydro-4H-imidazol-4-one by One-Pot Three-Component Domino Reaction. Journal of Combinatorial Chemistry, 9, 935-942.
https://doi.org/10.1021/cc070022i
[35]  Bálint, E., Tajti, á., ádám, A., Csontos, I., Karaghiosoff, K., Czugler, M., ábrányi-Balogh, P. and Keglevich, G. (2017) The Synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine Oxides by the Microwave-Assisted Pudovik Reaction. Beilstein Journal of Organic Chemistry, 13, 76-86.
https://doi.org/10.3762/bjoc.13.10
[36]  Kallitsakis, M.G., Tancini, P.D., Dixit, M., Mpourmpakis, G. and Lykakis, I.N. (2018) Mechanistic Studies on the Michael Addition of Amines and Hydrazines to Nitrostyrenes: Nitroalkane Elimination via a Retro-aza-Henry-Type Process. Journal of Organic Chemistry, 83, 1176-1184.
https://doi.org/10.1021/acs.joc.7b02637
[37]  Smith, E.M., Sorota, S., Kim, H.M., McKittrick, B.A., Nechuta, T.L., Bennett, C., Knutson, C., Burnett, D.A., Kieselgof, J., Tan, Z., Rindgen, D., Bridal, T., Zhou, X., Jia, Y.-P., Dong, Z., Mullins, D., Zhang, X., Priestley, T., Correll, C.C., Tulshian, D., Czarniecki, M. and Greenlee, W.J. (2010) T-Type Calcium Channel Blockers: Spiro-Piperidine Azetidines and Azetidinones-Optimization, Design and Synthesis. Bioorganic & Medicinal Chemistry Letters, 20, 4602-4606.
https://doi.org/10.1016/j.bmcl.2010.06.012
[38]  Samanta, S.R., Da Silva, J.P., Baldridge, A., Tolbert, L.M. and Ramamurthy, V. (2014) A Latent Reaction in a Model GFP Chromophore Revealed upon Confinement: Photohydroxylation of Ortho-Halo Benzylidene-3-methylimidazolidiones via an Electrocylization Process. Organic Letters, 16, 3304-3307.
https://doi.org/10.1021/ol5013058
[39]  Ou, X., Labes, R., Battilocchio, C. and Ley, S.V. (2018) Preparation of Homoallylic Amines via a Three-Component Coupling Process. Organic & Biomolecular Chemistry, 16, 6652-6654.
https://doi.org/10.1039/C8OB01831F
[40]  Baldridge, A., Kowalik, J. and Tolbert, L.M. (2010) Efficient Synthesis of New 4-arylideneimidazolin-5-ones Related to the GFP Chromophore by 2+3 Cyclocondensation of Arylideneimines with Imidate Ylides. Synthesis, No. 14, 2424-2436.
https://doi.org/10.1055/s-0029-1218796
[41]  Zhong, M., Liu, Y., Liu, X., Ma, X. and Yang, Z. (2017) Synthesis of [LAl(μ-S)2AlL] (L = HC(CMeNAr)2, Ar = 2,6-Et2C6H3) with the Insertion of Sulfur into the Al-H Bonds of LAlH2 and Its Application in Catalysis. Inorganica Chimica Acta, 464, 182-185.
https://doi.org/10.1016/j.ica.2017.05.034
[42]  Piens, N., Goossens, H., Hertsen, D., Deketelaere, S., Crul, L., Demeurisse, L., De Moor, J., Van den Broeck, E., Mollet, K., Van Hecke, K., Van Speybroeck, V. and D’hooghe, M. (2017) Reactivity of 3-Oxo-β-lactams with Respect to Primary Amines—An Experimental and Computational Approach. Chemistry—A European Journal, 23, 18002-18009.
https://doi.org/10.1002/chem.201703852
[43]  Coulibaly, W.K., Paquin, L., Benie, A., Bekro, Y.-A., Durieu, E., Meijer, L. and Bazureau, J.P. (2012) Synthesis of N,N’-bis(5-arylidene-4-oxo-3,5-dihydro-4H-imidazol-2-yl)diamines Bearing Various Linkers and Biological Evaluation as Potential Inhibitors of Kinases. European Journal of Medicinal Chemistry, 58, 581-590.
https://doi.org/10.1016/j.ejmech.2012.08.044
[44]  Moreau, E., Dar’in, D. and Krasavin, M. (2018) The First Example of Azole-Fused Cyclic Anhydride Reacting in the Castagnoli-Cushman Way. Synlett, 29, 890-893.
https://doi.org/10.1055/s-0036-1591908
[45]  Vayer, M., Morcillo, S.P., Dupont, J., Gandon, V. and Bour, C. (2018) Iron-Catalyzed Reductive Ethylation of Imines with Ethanol. Angewandte Chemie, International Edition, 57, 3228-3232.
https://doi.org/10.1002/anie.201800328
[46]  Zhu, Z. and Espenson, J.H. (1996) Organic Reactions Catalyzed by Methylrhenium Trioxide: Reactions of Ethyl Diazoacetate and Organic Azides. Journal of the American Chemical Society, 118, 9901-9907.
https://doi.org/10.1021/ja954039t
[47]  Greger, J.G., Yoon-Miller, S.J.P., Bechtold, N.R., Flewelling, S.A., MacDonald, J.P., Downey, C.R., Cohen, E.A. and Pelkey, E.T. (2011) Synthesis of Unsymmetrical 3,4-diaryl-3-pyrrolin-2-ones Utilizing Pyrrole Weinreb Amides. Journal of Organic Chemistry, 76, 8203-8214.
https://doi.org/10.1021/jo2013516
[48]  Blackburn, L. and Taylor, R.J.K. (2001) In Situ Oxidation-Imine Formation-Reduction Routes from Alcohols to Amines. Organic Letters, 3, 1637-1639.
https://doi.org/10.1021/ol015819b
[49]  D’Hooghe, M., Mollet, K., Dekeukeleire, S. and De Kimpe, N. (2010) Stereoselective Synthesis of Trans- and Cis-2-aryl-3-(hydroxymethyl)aziridines through Transformation of 4-aryl-3-chloro-β-lactams and Study of Their Ring Opening. Organic & Biomolecular Chemistry, 8, 607-615.
https://doi.org/10.1039/B919864D

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413