全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acoustoelectric Effect in Fluorinated Carbon Nanotube in the Absence of External Electric Field

DOI: 10.4236/wjcmp.2020.101001, PP. 1-11

Keywords: Carbon Nanotube, Fluorinated, Acoustoelectric, Hypersound

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acoustoelectric effect (AE) in a non-degenerate Fluorine modified single walled carbon nanotube (FSWCNT) semiconductor is studied theoretically using the Boltzmann’s transport equation. The study is done in the hypersound regime i.e. \"\" , where q is the acoustic phonon wavenumber and \"\" is the electron mean free path. The results obtained are compared with that of undoped single walled carbon nanotube (SWCNT). The AE current density for FSWCNT is observed to be four orders of magnitude smaller than that of undoped SWCNT with increasing temperature, that is \"\" . This is because the electron-phonon interactions in SWCNT are stronger than FSWCNT. Thus, there are more intra-mini-band electrons interacting with the acoustic phonons to generate a higher AE current in SWCNT than in FSWCNT. This has been observed experimentally, where the electrical resistance of FSWCNT is higher than pristine SWCNT i.e. \"\". The study shows the potential for FSWCNT as an ultrasound current source density imaging (UCSDI) and AE hydrophone material. However, FSWCNT offers the potential for room temperature applications of acoustoelectric device but other techniques are needed to reduce the resistance.

References

[1]  Galperin, Y.M. and Kagan, V.D. (1969) Aoustoelectric Effect in a Magnetic Field. Soviet Physics Solids State, USSR, 10, 1600.
[2]  Abdelraheem, S.K., Blyth, D.P. and Balkan, N. (2001) Amplification of Ultrasonic Waves in Bulk GaN and GaAlN/GaN Heterostructures. Physica Status Solidi (A), 185, 247-256.
https://doi.org/10.1002/1521-396X(200106)185:2<247::AID-PSSA247>3.0.CO;2-H
[3]  Hutson, A.R., McFee, I.H. and White, D.L. (1961) Ultrasonic Amplification in CdS. Physical Review Letters, 7, 273.
https://doi.org/10.1103/PhysRevLett.7.237
[4]  Weinreich, G. (1956) Acoustodynamic Effects in Semiconductors. Physical Review Journals Archive, 104, 321.
https://doi.org/10.1103/PhysRev.104.321
[5]  Mensah, S.Y. and Allotey, F.K.A. (1994) AE Effect in Semiconductor SL. Journal of Physics: Condensed Matter, 6, 6783.
https://doi.org/10.1088/0953-8984/6/34/010
[6]  Mensah, S.Y. and Allotey, F.K.A. (2000) Nonlinear AE Effect in Semiconductor SL’s. Journal of Physics: Condensed Matter, 12, 5225.
https://doi.org/10.1088/0953-8984/12/24/313
[7]  Wang, Z. (2011) Biomedical Applications of Acoustoelectric Effect.
[8]  Ford, C.J.B. (2017) Transporting and Manipulating Single Electrons in Surface-Acoustic-Wave Minima. Physica Status Solidi (B), 254, Article ID: 1600658.
https://doi.org/10.1002/pssb.201600658
[9]  Couto Jr., O.D.D., Lazic, S., Iikawa, F., Stotz, J.A.H., Jahn, U., Hey, R. and Santos, P.V. (2009) Photon Anti-Bunching in Acoustically Pumped Quantum Dots. Nature Photonics, 3, 645-648.
https://doi.org/10.1038/nphoton.2009.191
[10]  Hermelin, S., Takada, S., Yamamoto, M., Tarucha, S., Wieck, A.D., Saminadayar, L., Bauerle, C. and Meunier, T. (2011) Electrons Surfing on a Sound Wave as a Platform for Quantum Optics with Flying Electrons Nature, 477, 435-438.
https://doi.org/10.1038/nature10416
[11]  Epshtein, E.M. and Gulyaev, Y.V. (1967) AE Effect in CdS Pole Semiconductor. Soviet Physics-Solid State, 9, 288.
[12]  Mori, N. and Ando, T. (1989) Electronoptical-Phonon Interaction in Single and Double Heterostructures. Physical Review B, 40, 6175.
https://doi.org/10.1103/PhysRevB.40.6175
[13]  Pozela, J. and Juciene, V. (2000) Electron Mobility and electron Scattering by Polar Optical Phonons in Heterostructure Quantum Wells. Semiconductors, 34, 1011-1015.
[14]  Vasilopoulos, P., Charbonneau, M. and van Vlier, C.N. (1987) Linear and Nonlinear Electrical Conduction in Quasi-Two-Dimensional Quantum-Wells. Physical Review B, 35, 1334.
https://doi.org/10.1103/PhysRevB.35.1334
[15]  Suzuki, A. (1992) Theory of Hot-Electron Magnetophonon Resonance in Quasitwo-Dimensional Quantum Well Structure. Physical Review B, 45, 6731.
https://doi.org/10.1103/PhysRevB.45.6731
[16]  Shmelev, G.M., Chaikovskii, L.A. and Bau, N.Q. (1978) High-Frequency Conductivity of Semiconductors with Superlattice. Soviet Physics Solids State, USSR, 12, 1149-1152.
[17]  Bandhu, L. and Nash, G.R. (2014) Temperature Dependence of the Acoustoelectric Current in Graphene. Applied Physics Letters, 105, Article ID: 263106.
https://doi.org/10.1063/1.4905222
[18]  Dompreh, K.A., Mensah, N.G., Mensah, S.Y., Sam, F. and Twum, A.K. (2015) Acoustoelectric Effect in Degenerate Carbon Nanotube. ArXiv Preprint arXiv: 1504.05484.
[19]  Reulet, B., Yu Kasumov, A., Kociak, M., Deblock, R., Khodos, I.I., Gorbatov, Y.B., Volkov, V.T., Journet, C. and Bouchiat, H. (2000) Acoustoelectric Effects in Carbon Nanotubes. Physical Review Letters, 85, 2829.
https://doi.org/10.1103/PhysRevLett.85.2829
[20]  Mensah, S.Y., Allotey, F.K.A., Nkrumah, G. and Mensah, N.G. (2004) High Electron Thermal Conductivity of Chiral Carbon Nanotubes. Physica E, 152,
https://doi.org/10.1016/j.physe.2004.01.017
[21]  Matthew, A., Abukari, S.S., Adu, K.W., Mensah, S.Y. and Mensah, N.G. (2015) Effect of Hot Electrons on the Electrical Conductivity of Carbon Nanotubes under the Influence of Applied DC Field. The European Physical Journal B, 88, 13.
https://doi.org/10.1140/epjb/e2014-50493-5
[22]  Sekyi-Arthur, D., Mensah, S.Y., Mensah, N.G., Dompreh, K.A. and Edziah, R. (2016) Absorption of Acoustic Phonons in Fluorinated Carbon Nanotubes with Non-Parabolic, Double Periodic Band. ArXiv Preprint arXiv:1604.05699.
[23]  Sadykov, N.R., Kocherga, E.Y. and D’yachkov, P.N. (2013) Nonlinear Current in Modified Nanotubes with Exposure to Alternating and Constant Electric Fields. Russian Journal of Inorganic Chemistry, 58, 951-955.
https://doi.org/10.1134/S0036023613080202
[24]  Keisuke, S., Reimann, K., Woerner, M., Elsaesser, T., Hey, R. and Flytzanis, C. (2016) Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice. Physical Review Letters, 116, Article ID: 075504.
https://doi.org/10.1103/PhysRevLett.116.075504
[25]  Jeon, T.-I., Son, J.-H., An, K.H., Lee, Y.H. and Lee, Y.S. (2005) Terahertz Absorption and Dispersion of Fluorine-Doped Single-Walled Carbon Nanotube. Journal of Applied Physics, 98, 34316-34316.
[26]  Kryuchkov, S.V. and Mikheev, N.P. (1982) Characteristics of the Acoustoelectric Effect in Narrow-Gap Semiconductors. Soviet Physics Solids State, USSR, 16, 104.
[27]  Ridley, B.K. and Watkins, T.B. (1961) Negative Resistance and High Electric Field Capture Rates in Semiconductors. Journal of Physics and Chemistry of Solids, 22, 155-158.
https://doi.org/10.1016/0022-3697(61)90256-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413