全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Heat Treatment of Al Substrate on GaN Film Electrodeposited in Aqueous Solution

DOI: 10.4236/jsemat.2020.101001, PP. 1-19

Keywords: Gallium Nitride, Electrochemical Deposition, Growth from Aqueous Solutions, Aluminum Substrates

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most reports on the fabrication of high-quality Gallium nitride (GaN) are typically based on physical techniques that require very expensive equipment. Therefore, the electrodeposition was adopted and examined to develop a simple and economical method for GaN synthesis. GaN films are synthesized on aluminum substrates that are heat-treated at various temperatures using a low-cost and low-temperature electrochemical deposition technique. The electrochemical behavior of source ions in aqueous solutions is examined by cyclic voltammetry (CV).?In the solution at pH 1.5 containing 0.1M Ga(NO3)3, 2.5 M NH4NO3 and 0.6 M H3BO3, reduction of gallium and nitrate ions are observed in CV. The presence of hexagonal GaN and gallium oxide (Ga2O3) phases is detected for the films deposited on Al substrates at -3.5 mA•cm-2 for 3 h. The energy dispersive X-ray and mapping results reveal that Ga, O, and N coexist in these films. Raman analysis shows hexagonal GaN formation on Al substrates. The changes in the morphology and preferred orientation of GaN were found, which was caused by the reactivity of aluminum surface and the aluminum oxide layer formed by the heat treatment.

References

[1]  Nakamura, S., Mukai, T. and Senoh, M. (1994) Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes. Applied Physics Letters, 64, 1687-1689.
https://doi.org/10.1063/1.111832
[2]  Nakamura, S., Mukai, T. and Senoh, M. (1994) High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Green-Light-Emitting Diodes. Journal of Applied Physics, 76, 8189-8191.
https://doi.org/10.1063/1.357872
[3]  Khan, M.A., Chen, Q., Skogman, R.A. and Kuznia, J.N. (1995) Violet-Blue GaN Homojunction Light Emitting Diodes with Rapid Thermal Annealed p-Type Layers. Applied Physics Letters, 66, 2046-2047.
https://doi.org/10.1063/1.113687
[4]  Molnar, R.J., Singh, R. and Moustakas, T.D. (1995) Blue-Violet Light Emitting Gallium Nitride p-n Junctions Grown by Electron Cyclotron Resonance-Assisted Molecular Beam Epitaxy. Applied Physics Letters, 66, 268-270.
https://doi.org/10.1063/1.113513
[5]  Pankove, J.I. (1973) Luminescence in GaN. Journal of Luminescence, 7, 114-126.
https://doi.org/10.1016/0022-2313(73)90062-8
[6]  Strite, S. and Morkoç, H. (1992) GaN, AlN, and InN: A Review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 10, 1237-1266.
https://doi.org/10.1116/1.585897
[7]  Nakamura, S. (1997) III-V Nitride Based Light-Emitting Devices. Solid State Communications, 102, 237-248.
https://doi.org/10.1016/S0038-1098(96)00722-3
[8]  Nakamura, S., Senoh, M. and Mukai, T. (1993) High-Power InGaN/GaN Double-Heterostructure Violet Light Emitting Diodes. Applied Physics Letters, 62, 2390-2392.
https://doi.org/10.1063/1.109374
[9]  Jain, S.C., Willander, M., Narayan, J. and Overstraeten, R.V. (2000) III-Nitrides: Growth, Characterization, and Properties. Journal of Applied Physics, 87, 965-1006.
https://doi.org/10.1063/1.371971
[10]  Akasaki, I. (2004) The Evolution of Blue Light-Emitting Devices and Nitride Semiconductors. IEEJ Transactions on Fundamentals and Materials, 124, 107-113.
https://doi.org/10.1541/ieejfms.124.107
[11]  Akasaki, I., Amano, H., Kito, M. and Hiramatsu, K. (1999) Photoluminescence of Mg-Doped p-Type GaN and Electroluminescence of GaN p-n Junction LED. Journal of Luminescence, 48-49, 666-670.
https://doi.org/10.1016/0022-2313(91)90215-H
[12]  Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I. (1989) P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Journal of Applied Physics, 28, 2112-2114.
https://doi.org/10.1143/JJAP.28.L2112
[13]  Nakamura, S., Mukai, T. and Senoh, M. (1998) High-Power GaN p-n Junction Blue-Light-Emitting Diodes. Journal of Applied Physics, 30, 1998-2001.
https://doi.org/10.1143/JJAP.30.L1998
[14]  Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T. and Mukai, T. (1995) Superbright Green InGaN Single-Quantum-Well Structure Light-Emitting Diodes. Applied Physics Letters, 34, 1332-1335.
https://doi.org/10.1143/JJAP.34.L1332
[15]  Nakamura, S., Senoh, Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y. (1996) InGaN Multi-Quantum-Well-Structure Laser Diodes with Cleaved Mirror Cavity Facets. Journal of Applied Physics, 35, 217-220.
https://doi.org/10.1143/JJAP.35.L217
[16]  Nakamura, S., Senoh, Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y. (1996) InGaN Multi-Quantum-Well Structure Laser Diodes Grown on MgAl2O4 Substrates. Journal of Applied Physics, 68, 2105-2107.
https://doi.org/10.1063/1.115599
[17]  Talwar, D.N., Sofranko, D., Mooney, C. and Tallo, S. (2002) Elastic, Structural, Bonding, and Defect Properties of Zinc-Blende BN, AlN, GaN, InN and Their Alloys. Materials Science and Engineering: B, 90, 269-277.
https://doi.org/10.1016/S0921-5107(01)00939-4
[18]  Funato, M., Ueda, M., Kawakami, Y., Narukawa1, Y., Kosugi, T., Takahashi, M. and Mukai, T. (2006) Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates. Journal of Applied Physics, 45, 659-662.
https://doi.org/10.1143/JJAP.45.L659
[19]  Nakamura, S., Isawa, N., Senoh, M. and Mukai, T. (1992) Hole Compensation Mechanism of P-Type GaN Films. Journal of Applied Physics, 31, 1258-1266.
https://doi.org/10.1143/JJAP.31.1258
[20]  Jung, W.G., Jung, S.H., Kung, P. and Razeghi, M. (2006) Fabrication of GaN Nanotubular Material Using MOCVD with an Aluminium Oxide Membrane. Nanotechnology, 17, 54-59.
https://doi.org/10.1088/0957-4484/17/1/010
[21]  Saidi, C., Chaaben, N., Bchetnia, A., Fouzri, A., Sakly, N. and El Jani, B. (2013) Growth of Scandium Doped GaN by MOVPE. Superlattices and Microstructures, 60, 120-128.
https://doi.org/10.1016/j.spmi.2013.05.010
[22]  Park, Y.S., Kang, T.W. and Taylor, R. (2008) Abnormal Photoluminescence Properties of GaN Nanorods Grown on Si (111) by Molecular-Beam Epitaxy. Nanotechnology, 19, 1-5.
https://doi.org/10.1088/0957-4484/19/47/475402
[23]  Kim, W., Aktas, O., Botchkarev, A.E., Salvador, A., Mohammad, S.N. and Morkoc, H. (1996) Reactive Molecular Beam Epitaxy of Wurtzite GaN: Materials Characteristics and Growth Kinetics. Journal of Applied Physics, 79, 7657-7666.
https://doi.org/10.1063/1.362430
[24]  Bao, K., Wang, L., Sun, H., Guo, R. and Wu, Y. (2013) Synthesis of GaN Cauliflowers by Ammoniating Ga2O3. Journal of Alloys and Compounds, 552, 26-30.
https://doi.org/10.1016/j.jallcom.2012.10.093
[25]  Xue, S., Zhang, X., Huang, R., Tian, D., Zhuang, H. and Xue, C. (2008) A Simple Method for the Growth of High-Quality GaN Nanobelts. Materials Letters, 62, 2743-2745.
https://doi.org/10.1016/j.matlet.2008.01.031
[26]  Saron, K. and Hashim, M. (2013) Broad Visible Emission from GaN Nanowires Grown on n-Si (111) Substrate by PVD for Solar Cell Application. Superlattices and Microstructures, 56, 55-63.
https://doi.org/10.1016/j.spmi.2012.12.020
[27]  Tang, Y., Chen, Z., Song, H., Lee, C., Cong, H., Cheng, H., Zhang, W., Bello, I. and Lee, S. (2008) Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells. Nano Letters, 8, 4191-4195.
https://doi.org/10.1021/nl801728d
[28]  Abdullah, Q.N., Yam, F.K., Hassan, Z. and Bououdina, M. (2012) Growth and Conversion of β-Ga2O3 Nanobelts into GaN Nanowires via Catalyst-Free Chemical Vapor Deposition Technique. Superlattices and Microstructures, 54, 215-224.
https://doi.org/10.1016/j.spmi.2012.11.017
[29]  Abdullah, Q.N., Yam, F.K., Hassan, J.J., Chin, C.W., Hassan, Z. and Bououdina, M. (2013) High Performance Room Temperature GaN-Nanowires Hydrogen Gas Sensor Fabricated by Chemical Vapor Deposition (CVD) Technique. International Journal of Hydrogen Energy, 38, 14085-14101.
https://doi.org/10.1016/j.ijhydene.2013.08.014
[30]  Iskandar, F., Ogi, T. and Okuyama, K. (2006) Simple Synthesis of GaN Nanoparticles from Gallium Nitrate and Ammonia Aqueous Solution under a Flow of Ammonia Gas. Materials Letters, 60, 73-76.
https://doi.org/10.1016/j.matlet.2005.07.075
[31]  Sprenger, J.K., Cavanagh, A.S., Sun, H., Wahl, K.J., Roshko, A. and George, S.M. (2016) Electron Enhanced Growth of Crystalline Gallium Nitride Thin Films at Room Temperature and 100 °C Using Sequential Surface Reactions. Chemistry of Materials, 28, 5282-5294.
https://doi.org/10.1021/acs.chemmater.6b00676
[32]  Roy, R.K. and Pal, A.K. (2005) Electrodeposition of Gallium in the Presence of NH4Cl in an Ionic Liquid: Hints for GaN Formation. Materials Letters, 59, 2204-2209.
https://doi.org/10.1016/j.matlet.2005.02.067
[33]  Al-Heuseen, K., Hashim, M.R. and Ali, N.K. (2010) Synthesis of Hexagonal and Cubic GaN Thin Film on Si (111) Using a Low-Cost Electrochemical Deposition Technique. Materials Letters, 64, 1604-1606.
https://doi.org/10.1016/j.matlet.2010.04.043
[34]  Qaeed, M.A., Ibrahim, K., Saron, K.M.A. and Salhin, A. (2013) Cubic and Hexagonal GaN Nanoparticles Synthesized at Low Temperature. Superlattices and Microstructures, 64, 70-77.
https://doi.org/10.1016/j.spmi.2013.08.015
[35]  Al-Heuseen, K. and Hashim, M.R. (2011) One-Step Synthesis of GaN Thin Films on Si Substrate by a Convenient Electrochemical Technique at Low Temperature for Different Durations. Journal of Crystal Growth, 324, 274-277.
https://doi.org/10.1016/j.jcrysgro.2011.03.051
[36]  Al-Heuseen, K. (2016) Synthesis of GaN Thin Film Using a Low-Cost Electrochemical Deposition Technique for Hydrogen Gas Sensing. International Journal of Thin Films Science and Technology, 5, 113-119.
https://doi.org/10.18576/ijtfst/050206
[37]  Sarkar, S. and Sampath, S. (2016) Ambient Temperature Deposition of Gallium Nitride/Gallium Oxynitride from a Deep Eutectic Electrolyte, under Potential Control. Chemical Communications, 52, 6407-6410.
https://doi.org/10.1039/C6CC02487D
[38]  Huang, Q., Deligianni, H. and Romankiw, L.T. (2006) Electrodeposition of Gold on Silicon Nucleation and Growth Phenomena. Journal of the Electrochemical Society, 153, 332-336.
https://doi.org/10.1149/1.2183947
[39]  Budevski, E., Staikov, G. and Lorenz, W.J. (1996) Electrochemical Phase Formation and Growth. Wiley VCH, Weinheim, 294-297.
https://doi.org/10.1002/9783527614936
[40]  Ogata, Y.H., Kobayashi, K. and Motoyama, M. (2006) Electrochemical Metal Deposition on Silicon. Current Opinion in Solid State & Materials Science, 10, 163-172.
https://doi.org/10.1016/j.cossms.2007.02.001
[41]  Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y. (1986) Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer. Applied Physics Letters, 48, 353-354.
https://doi.org/10.1063/1.96549
[42]  Chena, P., Zhang, R., Zhao, Z.M., Xia, D.J., Shen, B., Chen, Z.Z., Zhou, Y.G., Xie, S.Y., Lu, W.F. and Zheng, Y.D. (2001) Growth of High Quality GaN Layers with AlN Buffer on Si (111) Substrates. Journal of Crystal Growth, 225, 150-154.
https://doi.org/10.1016/S0022-0248(01)00842-9
[43]  Huang, C.C., Chang, S.J., Chuang, R.W., Lin, J.C., Cheng, Y.C. and Lin, W.J. (2010) GaN Grown on Si (111) with Step-Graded AlGaN Intermediate Layers. Applied Surface Science, 256, 6367-6370.
https://doi.org/10.1016/j.apsusc.2010.04.018
[44]  Kim, M.H., Do, Y.G., Kang, H.C., Noh, D.Y. and Park, S.J. (2001) Effects of Step-Graded AlxGa11-xN Interlayer on Properties of GaN Grown on Si (111) Using Ultrahigh Vacuum Chemical Vapor Deposition. Applied Physics Letters, 79, 2713-2715.
https://doi.org/10.1063/1.1412824
[45]  Wang, L., Liu, X., Zan, Y., Wang, J., Wang, D., Lu, D. and Wang, Z. (1998) Wurtzite GaN Epitaxial Growth on a Si (001) Substrate Using γ-Al2O3 as an Intermediate Layer. Applied Physics Letters, 72, 109-111.
https://doi.org/10.1086/311781
[46]  Cheng, K., Leys, M., Degroote, S., Germain, M. and Borghs, G. (2008) High Quality GaN Grown on Silicon (111) Using a Interlayer by Metal-Organic Vapor Phase Epitaxy. Applied Physics Letters, 92, Article ID: 192111.
https://doi.org/10.1063/1.2928224
[47]  Wu, C.L., Wang, J.C., Chan, M.H., Chen, T.T. and Gwo, S. (2003) Heteroepitaxy of GaN on Si (111) Realized with a Coincident-Interface AlN/β-Si3N4(0001) Double-Buffer Structure. Applied Physics Letters, 83, 4530-4532.
https://doi.org/10.1063/1.1629384
[48]  Akiyama, M., Nagao, K., Ueno, N., Tateyama, H. and Yamada, T. (2004) Influence of Metal Electrodes on Crystal Orientation of Aluminum Nitride Thin Films. Vacuum, 74, 699-703.
https://doi.org/10.1016/j.vacuum.2004.01.052
[49]  Takeno, N. (2005) Atlas of Eh-pH Diagrams. Intercomparison of Thermodynamic Databases. National Institute of Advanced Industrial Science and Technology, Tsukuba, 153-155.
[50]  Kang, J.W., Mitsuhashi, T., Kuroda, K. and Okido, M. (2019) Low-Temperature Synthesis of GaN Film from Aqueous Solution by Electrodeposition. Journal of Applied Electrochemistry, 49, 871-881.
https://doi.org/10.1007/s10800-019-01327-w
[51]  Pourbaix, M.J.N. (1949) Thermodynamics of Dilute Aqueous Solutions. Edward Arnold and Co., London.
[52]  Cubicciotti, D. (1989) Equilibrium Chemistry of Nitrogen and Potential-pH Diagrams for the Fe-Cr-H2O System in BWR Water. Journal of Nuclear Materials, 167, 241-248.
https://doi.org/10.1016/0022-3115(89)90447-9
[53]  Ryan, N. and Lumley, E.J. (1959) The Source of the Nitrogen Impurity in Electrodeposited Chromium. Journal of The Electrochemical Society, 106, 388-391.
https://doi.org/10.1149/1.2427365
[54]  Gabe, D.R. (1997) The Role of Hydrogen in Metal Electrodeposition Processes. Journal of Applied Electrochemistry, 27, 908-915.
https://doi.org/10.1023/A:1018497401365
[55]  Segal, F.M., Correa, M.F., Bacani, R., Castanheira, B., Politi, M.J., Brochsztain, S. and Triboni, E.R. (2018) A Novel Synthesis Route of Mesoporous γ-Alumina from Polyoxohydroxide Aluminum. Materials Research, 21, 1-8.
https://doi.org/10.1590/1980-5373-mr-2017-0674
[56]  Tsuda, T., Nohira, T. and Ito, Y. (2002) Nucleation and Surface Morphology of Aluminum-Lanthanum Alloy Electrodeposited in a LaCl3-Saturated AlCl3-EtMeImCl Room Temperature Molten Salt. Electrochimica Acta, 47, 2817-2822.
https://doi.org/10.1016/S0013-4686(02)00168-8
[57]  Huang, E., Li, J., Wu, G., Dai, W., Guan, N. and Li, L. (2017) A Simple Synthesis of Ga2O3 and GaN Nanocrystals. RSC Advances, 7, 47898-47903.
https://doi.org/10.1039/C7RA10639D
[58]  Boo, J.H., Ustin, S.A. and Ho, W. (1998) Growth of Hexagonal GaN Thin Films on Si (111) with Cubic SiC Buffer Layers. Journal of Crystal Growth, 189-190, 183-188.
https://doi.org/10.1016/S0022-0248(98)00222-X
[59]  Yang, C.C., Lo, I., Hsu, Y.C. and Yang, H.Y. (2017) GaN and InN Hexagonal Microdisks. In: Zhong, M., Ed., Epitaxy, IntechOpen, London, Chap. 7.
https://doi.org/10.5772/intechopen.70120
[60]  Fang, Z.L., Kang, J.Y. and Shen, W.Z. (2008) Surface Modification and Significant Reduction of Yellow/Blue Luminescence of Gallium Nitride. The Journal of Physical Chemistry C, 112, 17652-17656.
https://doi.org/10.1021/jp806202n
[61]  Hu, C.C. and Teng, H. (2010) Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation. The Journal of Physical Chemistry C, 114, 20100-20106.
https://doi.org/10.1021/jp1070083
[62]  Song, Y.P., Zhang, H.Z., Lin, C., Zhu, Y.W., Li, G.H., Yang, F.H. and Yu, D.P. (2004) Luminescence Emission Originating from Nitrogen Doping of β-Ga2O3 Nanowires. Physical Review B: Condensed Matter and Materials Physics, 69, Article ID: 075304.
https://doi.org/10.1103/PhysRevB.69.075304
[63]  Harima, H. (2002) Characterization of GaN and Related Nitrides by Raman Scattering. Journal of the Society of Materials Science, Japan, 51, 983-988.
https://doi.org/10.2472/jsms.51.983

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133