全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Re-Assembly of Archaeological Massive Limestones Using Epoxy Resin Modified with Nanomaterials—Part 1: Experimental

DOI: 10.4236/gsc.2020.101003, PP. 24-38

Keywords: Epoxy Resins, Nanocomposites, Re-Assembly, Massive Limestones, Mechanical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

Massive limestones were used in construction of ancient Egyptian tombs, temples, obelisks and other sculptures. These stones are always exposed to physico-mechanical deterioration and destructive forces, leading to partial or total collapse. The task of reassembling this type of artifacts represents a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken massive stones. The epoxy resins are used extensively in stone conservation and re-assembly of broken stones because of their outstanding mechanical properties. The adding of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and massive objects. The aim of this study is to evaluate the effectiveness of montmorillonite clay, calcium carbonate, and silicon dioxide nanoparticles for enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive limestones. Scanning electron microscopy (SEM) was employed in order to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. Artificial aging, tensile, compressive, and elongation strength tests were used to evaluate the efficiency of epoxy-nanocomposites. The results showed that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and elongation strength, in addition to improving the mechanical properties of stone joints.

References

[1]  Vasconcelos, G. (2006) Experimental Investigations on Dry Stone Masonry Walls. 1st International Conference on Restoration of Heritage Masonry Structures, Cairo, 24-27 April 2006, 214-223.
[2]  Fitzner, B., Heinrichs, K. and Bouchardiers, D. (2002) Limestone Weathering of Historical Monuments in Cairo, Egypt. Special Publication, Geological Society of London, London, Volume 205, 217-239.
https://doi.org/10.1144/GSL.SP.2002.205.01.17
[3]  May, C.A. (1988) Epoxy Resins, Chemistry and Technology. Second Edition, Marcel Dekker, New York, Basel.
[4]  Petrie, E.M. (2006) Epoxy Adhesive Formulations. McGraw-Hill, New York.
[5]  Rodgers, R.M., Mahfuz, H., Rangari, V.K., Chisholm, N. and Jeelani, S. (2005) Infusion of SiC Nanoparticles into SC-15 Epoxy: An Investigation of Thermal and Mechanical Response. Macromolecular Materials and Engineering, 290, 423-429.
https://doi.org/10.1002/mame.200400202
[6]  Cavaletti, R., Lazzarini, L., Marchesini, L. and Marinelli, G. (1985) A New Type of Epoxy Resin for the Structural Consolidation of Badly Decayed Stones. 5th International Congress on the Deterioration and Conservation of Stone, Lausanne, 25-27 September 1985, 769-777.
[7]  Bauer, R.S. (1982) Formulating Weatherable Epoxy Resin for Maximum Performance. Water Borne and Higher Solids Coatings Symposium, New Orleans, 1982, 729-783.
[8]  Dillard, D. (2010) Improvements in Structural Adhesive Bonding. Woodhead Publishing Ltd., Cambridge.
https://doi.org/10.1533/9781845698058
[9]  Domaslowski, W. and Strzelczyk, A. (1986) Evaluation of Applicability of Epoxy Resins to Conservation of Stone Historic Monuments. Case Studies in the Conservation of Stone and Wall Painting. Preprints of the Contributions to the Bologna Congress, London, 22-26 September 1986, 126-132.
https://doi.org/10.1179/sic.1986.31.Supplement-1.126
[10]  Proudfoot, T., Garland, K. and Larsen, J. (1988) The Examination and Conservation of a Collection of Gandharan Sculptures from Antony House, Cornwall. The Conservation of Far Eastern Art, IIC, Kyoto, 19-23 September 1988, 113-120.
https://doi.org/10.1179/sic.1988.33.1.113
[11]  Kinloch, A.J. (2003) Toughening Epoxy Adhesives to Meet Today’s Challenges. MRS Bulletin, 28, 445-448.
https://doi.org/10.1557/mrs2003.126
[12]  Podany, J., Garland, K., Freeman, W. and Rogers, J. (2000) Paraloid B-72 as a Structural Adhesive and as a Barrier within Structural Adhesive Bonds: Evaluations of Strength and Reversibility. Journal of the American Institute for Conservation, 40, 15-33.
https://doi.org/10.1179/019713601806113120
[13]  Khashaba, U.A., Aljinaidi, A.A. and Hamed, M.A. (2014) Nanofillers Modification of Epocast 50-A1/946 Epoxy for Bonded Joints. Chinese Journal of Aeronautics, 27, 1288-1300.
https://doi.org/10.1016/j.cja.2014.08.007
[14]  Kavitha, N., Balasubramanian and Kennedy, A.X. (2013) Investigation of Impact Behavior of Epoxy Reinforced with Nanometer- and Micrometer-Sized Silicon Carbide Particles. Journal of Composite Materials, 47, 1877-1884.
https://doi.org/10.1177/0021998312451920
[15]  Faleh, H., Al-Mahaidi, R. and Shen, L. (2012) Fabrication and Characterization of Nano-Particles-Enhanced Epoxy. Composites Part B: Engineering, 43, 3076-3080.
https://doi.org/10.1016/j.compositesb.2012.04.055
[16]  Dorigato, A. and Pegoretti, A. (2012) Development and Thermo-Mechanical Behaviour of Nanocomposite Epoxy Adhesives. Polymers for Advanced Technologies, 23, 660-668.
https://doi.org/10.1002/pat.1942
[17]  Prolongo, S.G., Gude, M.R., Sanchez, J. and Urena, A. (2009) Nanoreinforced Epoxy Adhesives for Aerospace Industry. The Journal of Adhesion, 85, 180-199.
https://doi.org/10.1080/00218460902881766
[18]  Pinto, D., Bernardo, L., Amaro, A. and Lopes, S. (2015) Mechanical Properties of Epoxy Nanocomposites Using Titanium Dioxide as Reinforcement—A Review. Construction and Building Materials, 95, 506-524.
[19]  Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R.E. (2006) Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. Journal of Composite Materials, 40, 1511-1575.
https://doi.org/10.1177/0021998306067321
[20]  Becker, O. and Simon, G.P. (2005) Epoxy Layered Silicate Nanocomposites. Advances in Polymer Science, 179, 29-82.
https://doi.org/10.1007/b107204
[21]  Karamipour, S., Ebadi-Dehaghani, H., Ashouri, D. and Mousavian, S. (2011) Effect of Nano-CaCO3 on Rheological and Dynamic Mechanical Properties of Polypropylene: Experiments and Models. Polymer Testing, 30, 110-117.
https://doi.org/10.1016/j.polymertesting.2010.10.009
[22]  Liu, W., Hoa, S.V. and Pugh, M. (2005) Organoclay-Modified High Performance Epoxy Nanocomposites. Composite Science and Technology, 65, 307-316.
https://doi.org/10.1016/j.compscitech.2004.07.012
[23]  Jan, I.-N., Lee, T.M., Chiou, K.C. and Lin, J.J. (2005) Comparisons of Physical Properties of Intercalated and Exfoliated Clay/Epoxy Nanocomposites. Industrial & Engineering Chemistry Research, 44, 2086-2090.
https://doi.org/10.1021/ie048934+
[24]  Zaman, I., et al. (2015) Influence of Interface on Epoxy/Clay Nanocomposites: 1. Morphology Structure. Procedia Manufacturing, 2, 17-22.
https://doi.org/10.1016/j.promfg.2015.07.004
[25]  Shentu, B., Li, J. and Weng, Z. (2006) Effect of Oleic Acid-Modified Nano-CaCO3 on the Crystallization Behavior and Mechanical Properties of Polypropylene. Chinese Journal of Chemical Engineering, 14, 814-818.
https://doi.org/10.1016/S1004-9541(07)60018-4
[26]  Saghi, S.S., Zebarjad, S.M., Khaki, J.V. and Sajjadi, S.A. (2009) The Effect of Nano-Sized Calcium Carbonate on Thermodynamic Parameters of HDPE. Journal of Materials Processing Technology, 209, 1310-1317.
https://doi.org/10.1016/j.jmatprotec.2008.03.066
[27]  Zhang, Z., Wang, C., Meng, Y. and Mai, K. (2012) Synergistic Effects of Toughening of Nano-CaCO3 and Toughness of β-Polypropylene. Composites Part A: Applied Science and Manufacturing, 43, 189-197.
https://doi.org/10.1016/j.compositesa.2011.10.008
[28]  Maravelaki-Kalaitzaki, P., Kallithrakas-Kontos, N., Agioutantis, Z., Maurigiannakis, S. and Korakaki, D. (2008) A Comparative Study of Porous Limestones Treated with Silicon-Based Strengthening Agents. Progress in Organic Coatings, 62, 49-60.
https://doi.org/10.1016/j.porgcoat.2007.09.020
[29]  Ren, C., Sun, J., Li, J., Chen, X., Hu, Z. and Xue, D. (2009) Bi-Functional Silica Nanoparticles Doped with Iron Oxide and CdTe Prepared by a Facile Method. Nanoscale Research Letters, 4, 640-645.
https://doi.org/10.1007/s11671-009-9295-9
[30]  Xue, L., Li, J., Fu, J. and Han, Y. (2009) Super-Hydrophobicity of Silica Nanoparticles Modified with Vynil Groups. Colloid Surface A, 338, 15-19.
https://doi.org/10.1016/j.colsurfa.2008.12.016
[31]  Aldoasri, M.A., Darwish, S.S., Adam, M.A., Elmarzugi, N.A. and Ahmed, S.M. (2017) Enhancing the Durability of Calcareous Stone Monuments of Ancient Egypt Using CaCO3 Nanoparticles. Sustainability, 9, 1-17.
https://doi.org/10.3390/su9081392
[32]  Buasri, A., Chaiyut, N., Borvornchettanuwat, K., Chantanachai, N. and Thonglor, K. (2012) Thermal and Mechanical Properties of Modified CaCO3/PP Nanocomposites. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 6, 689-692.
[33]  Bagherzadeh, M.R. and Mahdavi, F. (2007) Preparation of Epoxy-Clay Nanocomposite and Investigation on Its Anti-Corrosive Behavior in Epoxy Coating. Progress in Organic Coatings, 60, 117-120.
https://doi.org/10.1016/j.porgcoat.2007.07.011
[34]  BS EN 12370 (1999) Natural Stone Test Methods—Determination of Resistance to Salt Crystallisation.
[35]  Khallaf, M.K., El-Midany, A.A. and El-Mofty, S.E. (2011) Influence of Acrylic Coatings on the Interfacial, Physical, and Mechanical Properties of Stone-Based Monuments. Progress in Organic Coatings, 72, 592-598.
https://doi.org/10.1016/j.porgcoat.2011.06.021
[36]  ASTM D 412-66 T (1998) Standard Test Method for Tensile Strength and Young’s Modulus for High-Modulus Single-Filament Materials.
[37]  ASTM C (1976) American Society for Testing, and Protection of Stone Monuments. Standard Test Methods for Compressive Strength of Natural Building Stone, ASTM C 170, UNESCO, Paris.
[38]  Bashar, M.T. and Mertiny, P. (2014) Mechanical and Mode-I Fracture Properties of Epoxy-Clay Nanocomposites Prepared by Ultrasonic Dispersion Method. International Journal of Materials Science and Engineering, 2, 87-92.
[39]  Kusmono, Wildan, M.W. and Mohd Ishak, Z.A. (2013) Preparation and Properties of Clay-Reinforced Epoxy Nanocomposites. International Journal of Polymer Science, 2013, Article ID: 690675.
https://doi.org/10.1155/2013/690675
[40]  Tjong, S.C. (2006) Structural and Mechanical Properties of Polymer Nanocomposites. Materials Science and Engineering R, 53, 73-197.
https://doi.org/10.1016/j.mser.2006.06.001
[41]  Eiras, D. and Pessan, L.A. (2009) Mechanical Properties of Polypropylene/Calcium Carbonate Nanocomposites. Materials Research, 12, 517-522.
https://doi.org/10.1590/S1516-14392009000400023

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413