全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钾掺杂9-甲基蒽的晶体结构和磁性研究
Crystal Structure and Magnetic Property of Potassium-Doped 9-Methylanthracene

DOI: 10.12677/CMP.2019.84010, PP. 77-85

Keywords: 9-甲基蒽,钾掺杂,两步合成法,磁性,第一性原理计算
9-Methylanthracene
, Potassium-Doped, Two-Step Synthesis Method, Magnetism, First-Principle Calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用恒温超声和低温退火两步法成功地合成了钾掺杂9-甲基蒽的分子晶体。直流磁化率测量结果表明合成的样品在1.8~300 K温度范围内表现为居里–外斯行为,且每个分子具有0.2~0.3 μB的磁矩。结合X-射线衍射和第一性原理计算结果发现,掺杂材料的晶体结构具有P21空间群,且钾和9-甲基蒽的摩尔比为1:1。电子结构计算和拉曼光谱测试表明局域磁矩的产生是由于钾将4s电子转移到了碳的2p轨道上。该研究工作对碱金属掺杂有机分子晶体的合成和理解其物理特性具有重要的借鉴作用。
Potassium-doped 9-methylanthracene is successfully synthesized by using a two-step synthesis method—ultrasound treatment and low temperature annealing. The dc magnetic measurements reveal that the synthesized materials exhibit a Curie-Weiss behavior in the temperature range of 1.8~300 K. The combination of measured XRD pattern and first-principle calculations identifies that the doped materials have a P21 space group and a mole ratio of 1:1 between potassium and 9-methylanthracene. Both the calculated electronic structure and the measured Raman spec-trum indicate that the formation of local moment is due to the transfer of K-4s electron to C-2p orbital. This study is useful for the synthesis of alkali-metal-doped organic molecular crystals and for understanding their physical properties.

References

[1]  Mitsuhashi, R., Suzuki, Y., Yamanari, Y., Mitamura, H., Kambe, T., Ikeda, N., Okamoto, H., Fujiwara, A., Yamaji, M. and Kawasaki, N. (2010) Superconductivity in Alkali-Metal-Doped Picene. Nature, 464, 76-79.
https://doi.org/10.1038/nature08859
[2]  Wang, X.F., Liu, R.H., Gui, Z., Xie, Y.L., Yan, Y.J., Ying, J.J., Luo, X.G. and Chen, X.H. (2012) Superconductivity at 5 K in Alkali-Metal-Doped Phenanthrene. Nature Communications, 2, Article No. 507.
https://doi.org/10.1038/ncomms1513
[3]  Xue, M., Cao, T., Wang, D., Wu, Y., Yang, H., Dong, X., He, J., Li, F. and Chen, G.F. (2012) Superconductivity above 30 K in Alkali-Metal-Doped Hydrocarbon. Scientific Reports, 2, Article No. 389.
https://doi.org/10.1038/srep00389
[4]  Wang, X., Yan, Y., Gui, Z., Liu, R., Ying, J., Luo, X. and Chen, X. (2011) Superconductivity in A1.5 Phenanthrene (A= Sr, Ba). Physical Review B, 84, Article ID: 214523.
https://doi.org/10.1103/PhysRevB.84.214523
[5]  Wang, X., Luo, X., Ying, J., Xiang, Z., Zhang, S., Zhang, R., Zhang, Y., Yan, Y., Wang, A. and Cheng, P. (2012) Enhanced Superconductivity by Rare-Earth Metal Doping in Phenanthrene. Journal of Physics: Condensed Matter, 24, 345701.
https://doi.org/10.1088/0953-8984/24/34/345701
[6]  Artioli, G.A., Hammerath, F., Mozzati, M.C., Carretta, P., Corana, F., Mannucci, B., Margadonna, S. and Malavasi, L. (2015) Superconductivity in Sm-Doped [n] Phenacenes (n= 3, 4, 5). Chemical Communications, 51, 1092-1095.
https://doi.org/10.1039/C4CC07879A
[7]  Zhong, G.H., Yang, D.Y., Zhang, K., Wang, R.S., Zhang, C., Lin, H.Q. and Chen, X.J. (2018) Superconductivity and Phase Stability of Potassium-Doped Biphenyl. Physical Chemistry Chemical Physics, 20, 25217-25223.
https://doi.org/10.1039/C8CP05184D
[8]  Wang, R.S., Gao, Y., Huang, Z.B. and Chen, X.J. (2017) Superconductivity above 120 Kelvin in a Chain Link Molecule. arXiv preprint arXiv:1703.06641.
[9]  Liu, W., Lin, H., Kang, R., Zhu, X., Zhang, Y., Zheng, S. and Wen, H.H. (2017) Magnetization of Potassium-Doped p-Terphenyl and p-Quaterphenyl by High-Pressure Synthesis. Physical Review B, 96, Article ID: 224501.
https://doi.org/10.1103/PhysRevB.96.224501
[10]  Neha, P., Bhardwaj, A., Sahu, V. and Patnaik, S. (2018) Facile Synthesis of Potassium Intercalated p-Terphenyl and Signatures of a Possible High Tc Phase. Physica C: Superconductivity and Its Applications, 554, 1-7.
https://doi.org/10.1016/j.physc.2018.08.011
[11]  Yan, J.F., Zhong, G.H., Wang, R.S., Zhang, K., Lin, H.Q. and Chen, X.J. (2018) Superconductivity and Phase Stability of Potassium-Intercalated p-Quaterphenyl. The Journal of Physical Chemistry Letters, 10, 40-47.
https://doi.org/10.1021/acs.jpclett.8b03263
[12]  Peng, D., Wang, R.S. and Chen, X. (2020) Superconductivity in Sodium Potassium Alloy Doped 2,2'-Bipyridine from Near Room Temperature Synthesis. The Journal of Physical Chemistry C, 124, 906-912.
https://doi.org/10.1021/acs.jpcc.9b09459
[13]  Wang, R.S., Cheng, J., Wu, X.L., Yang, H., Chen, X.J., Gao, Y. and Huang, Z.B. (2018) Superconductivity at 3.5 K and/or 7.2 K in Potassium-Doped Triphenylbismuth. The Journal of Chemical Physics, 149, Article ID: 144502.
https://doi.org/10.1063/1.5045631
[14]  Wang, R.S., Yang, H., Cheng, J., Wu, X.L., Fu, M.A., Chen, X.J., Gao, Y. and Huang, Z.B. (2019) Discovery of Superconductivity in Potassium-Doped Tri-p-Tolylbismuthine. The Journal of Physical Chemistry C, 123, 19105-19111.
https://doi.org/10.1021/acs.jpcc.9b02858
[15]  Wang, R.S., Chen, L.C., Yang, H., Fu, M.A., Cheng, J., Wu, X.L., Gao, Y., Huang, Z.B. and Chen, X.J. (2019) Superconductivity in an Organometallic Compound. Physical Chemistry Chemical Physics, 21, 25976-25981.
https://doi.org/10.1039/C9CP04227J
[16]  Phan, Q.T., Heguri, S., Tamura, H., Nakano, T., Nozue, Y. and Tanigaki, K. (2016) Two Different Ground States in K-Intercalated Polyacenes. Physical Review B, 93, Article ID: 075130.
https://doi.org/10.1103/PhysRevB.93.075130
[17]  Takabayashi, Y., Menelaou, M., Tamura, H., Takemori, N., Koretsune, T., ?tefan?i?, A., Klupp, G., Buurma, A.J.C., Nomura, Y. and Arita, R. (2017) π-Electron S= 1/2 Quantum Spin-Liquid State in an Ionic Polyaromatic Hydrocarbon. Nature Chemistry, 9, 635-643.
https://doi.org/10.1038/nchem.2764
[18]  Kambe, T., He, X., Takahashi, Y., Yamanari, Y., Teranishi, K., Mitamura, H., Shibasaki, S., Tomita, K., Eguchi, R. and Goto, H. (2012) Synthesis and Physical Properties of Metal-Doped Picene Solids. Physical Review B, 86, Article ID: 214507.
https://doi.org/10.1103/PhysRevB.86.214507
[19]  Heguri, S., Kobayashi, M. and Tanigaki, K. (2015) Questioning the Existence of Superconducting Potassium Doped Phases for Aromatic Hydrocarbons. Physical Review B, 92, Article ID: 014502.
https://doi.org/10.1103/PhysRevB.92.014502
[20]  Kambe, T., Nishiyama, S., Nguyen, H.L., Terao, T., Izumi, M., Sakai, Y., Zheng, L., Goto, H., Itoh, Y. and Onji, T. (2016) Chemical Analysis of Superconducting Phase in K-Doped Picene. Journal of Physics: Condensed Matter, 28, Article ID: 444001.
https://doi.org/10.1088/0953-8984/28/44/444001
[21]  Cox, P.J. and Sim, G. (1979) X-Ray Diffraction Studies of 9-Methylanthracene and 5-Methylnaphthacene. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 35, 404-410.
https://doi.org/10.1107/S0567740879003642
[22]  Xie, Y., Wang, X., Han, X., Xue, X., Ji, W., Qi, Z., Liu, J., Zhao, B. and Ozaki, Y. (2010) Sensing of Polycyclic Aromatic Hydrocarbons with Cyclodextrin Inclusion Complexes on Silver Nanoparticles by Surface-Enhanced Raman Scattering. Analyst, 135, 1389-1394.
https://doi.org/10.1039/c0an00076k
[23]  Pacansky, J., Koch, W. and Miller, M. (1991) Analysis of the Structures, Infrared Spectra, and Raman Spectra for Methyl, Ethyl, Isopropyl, and tert-Butyl Radicals. Journal of the American Chemical Society, 113, 317-328.
https://doi.org/10.1021/ja00001a046
[24]  Zhou, P., Wang, K.-A., Wang, Y., Eklund, P., Dresselhaus, M., Dresselhaus, G. and Jishi, R. (1992) Raman Scattering in C60 and Alkali-Metal-Saturated C60. Physical Review B, 46, Article ID: 2595.
https://doi.org/10.1103/PhysRevB.46.2595
[25]  Rao, A.M., Eklund, P., Bandow, S., Thess, A. and Smalley, R.E. (1997) Evidence for Charge Transfer in Doped Carbon Nanotube Bundles from Raman Scattering. Nature, 388, 257-259.
https://doi.org/10.1038/40827

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413