|
基于mRNA表达谱比较胃癌和房颤的分子生物特征
|
Abstract:
有研究显示,新发房颤患者的癌症风险显著增加,新发癌症患者的房颤风险也有所增加,说明两种疾病之间可能存在一定的联系。传统上,有关癌症和房颤的机制研究大多是独立开展的。本研究以胃癌为例,基于mRNA表达谱,采用生物信息学工具比较分析胃癌与房颤在分子水平上的生物特征,为癌症与房颤共病的机制研究提供一定的理论基础。首先从mRNA表达谱中分别筛选胃癌与房颤相关的差异表达mRNAs,再采用差异表达mRNAs分别富集胃癌与房颤的生物特征;然后通过分别构建胃癌与房颤的蛋白质–蛋白质相互作用网络,识别胃癌与房颤相关的重要靶向分子;最后,比较与分析胃癌与房颤在分子水平上的联系。研究结果表明,胃癌与房颤有一些相同的分子生物特征,二者相关的重要靶向分子也存在一定联系。
Some researches have shown that there was a significant increase in cancer risk in patients with new onset atrial fibrillation (AF), and there is also an increased risk of AF in new cancer patients. It suggests that there may be a relationship between the two diseases. Traditionally, the study on mechanisms of cancer and atrial fibrillation has been conducted independently. Based on mRNA expression profiles and by using bioinformatics tools, this study selected gastric cancer (GC) and AF as the objects of study, compared and analyzed the biological characteristics of GC and AF at the molecular level so as to provide a theoretical basis for the study on the mechanism of comorbidity between cancer and AF. Firstly, differentially expressed mRNAs associated with GC and AF were screened from mRNA expression profiles respectively, and then biological characteristics of GC and AF were enriched using differentially expressed mRNAs. Secondly, some key targeting mole cules related to GC and AF were identified from protein-protein interaction networks of them, re spectively. Finally, we compared and analyzed the relationships at the molecular level between GC and AF. The results showed that GC and AF have some of the same molecular biological characte ristics. There is also a certain relationship between the two key targeting molecules.
[1] | Khan, N., Afaq, F. and Mukhtar, H. (2010) Lifestyle as Risk Factor for Cancer: Evidence from Human Studies. Cancer Letters, 293, 133-143. https://doi.org/10.1016/j.canlet.2009.12.013 |
[2] | Ling, L.-H., Kistler, P.M., Kalman, J.M., Schilling, R.J. and Hunter, R.J. (2016) Comorbidity of Atrial Fibrillation and Heart Failure. Nature Reviews Cardiology, 13, 131-147. https://doi.org/10.1038/nrcardio.2015.191 |
[3] | Wutzler, A., Krogias, C., Grau, A., Veltkamp, R., Heuschmann, P.U. and Haeusler, K.G. (2019) Stroke Prevention in Patients with Acute Ischemic Stroke and Atrial Fibrillation in Germany—A Cross Sectional Survey. BMC Neurology, 19, 1-4. https://doi.org/10.1186/s12883-019-1249-y |
[4] | Anumonwo, J.M.B. and Kalifa, J. (2016) Risk Factors and Genetics of Atrial Fibrillation. Cardiology Clinics, 12, 157-166. https://doi.org/10.1016/j.hfc.2015.08.013 |
[5] | Tu, N.N., Hilmer, S.N. and Cumming, R.G. (2013) Review of Epidemiology and Management of Atrial Fibrillation in Developing Countries. International Journal of Cardiology, 167, 2412-2420. https://doi.org/10.1016/j.ijcard.2013.01.184 |
[6] | Fumagalli, S., Barchielli, A., Tarantini, F., Gabbai, D., Rinaldi, M.C., Fracchia, S., et al. (2012) Atrial Fibrillation and Cancer: Evidence for an Epidemiological Link. Journal of the American College of Cardiology, 59, E615. https://doi.org/10.1016/S0735-1097(12)60616-0 |
[7] | Hung, C.S., Chang, C.H., Lin, J.W., Ho, Y.L. and Chen, M.F. (2018) The Association between New Onset Atrial Fibrillation and Incident Cancer—A Nationwide Cohort Study. PLoS ONE, 13, e0199901. https://doi.org/10.1371/journal.pone.0199901 |
[8] | Jacob, K.A., Nathoe, H.M., Dieleman, J.M., van Osch, D., Kluin, J. and van Dijk, D. (2014) Inflammation in New-Onset Atrial Fibrillation after Cardiac Surgery: A Systematic Review. European Journal of Clinical Investigation, 44, 402-428. https://doi.org/10.1111/eci.12237 |
[9] | Rahman, F., Ko, D. and Benjamin, E.J. (2016) Association of Atrial Fibrillation and Cancer. JAMA Cardiology, 1, 384-386. https://doi.org/10.1001/jamacardio.2016.0582 |
[10] | Fitzpatrick, T., Carrier, M. and Gal, G.L. (2017) Cancer, Atrial Fibrillation, and Stroke. Thrombosis Research, 155, 101-105. https://doi.org/10.1016/j.thromres.2017.05.006 |
[11] | O’Neal, W.T., Lakoski, S.G., et al. (2015) Relation between Cancer and Atrial Fibrillation (From the Reasons for Geographic and Racial Differences in Stroke Study). The American Journal of Cardiology, 115, 1090-1094. https://doi.org/10.1016/j.amjcard.2015.01.540 |
[12] | Dimitrios, F., John, P. and Gerasimos, F. (2014) Insights into Onco-Cardiology: Atrial Fibrillation in Cancer. Journal of the American College of Cardiology, 63, 945-953. https://doi.org/10.1016/j.jacc.2013.11.026 |
[13] | Cheng, W.L., Kao, Y.H., Chen, S.A. and Chen, Y.J. (2016) Pathophysiology of Cancer Therapy-Provoked Atrial Fibrillation. International Journal of Cardiology, 219, 186-194. https://doi.org/10.1016/j.ijcard.2016.06.009 |
[14] | Lee, Y.Y. and Derakhshan, M.H. (2013) Environmental and Lifestyle Risk Factors of Gastric Cancer. Archives of Iranian Medicine, 16, 358-365. |
[15] | Andrea, F., Damian, S., Sune, F., Michael, K., Milan, S., Alexander, R., et al. (2013) STRING v9.1: Protein-Protein Interaction Networks, with Increased Coverage and Integration. Nucleic Acids Research, 41, D808-D815. https://doi.org/10.1093/nar/gks1094 |
[16] | Poos, K., Smida, J., Nathrath, M., Maugg, D., Baumhoer, D. and Korsching, E. (2012) How MicroRNA and Transcription Factor Co-Regulatory Networks Affect Osteosarcoma Cell Proliferation. PLoS Computational Biology, 9, 262-279. https://doi.org/10.1371/journal.pcbi.1003210 |
[17] | Feng, Y., Wang, Q. and Wang, T. (2017) Drug Target Protein-Protein Interaction Networks: A Systematic Perspective. Biomed Research International, 2017, Article ID: 1289259. https://doi.org/10.1155/2017/1289259 |
[18] | Chea, E. and Livesay, D.R. (2007) How Accurate and Statistically Robust Are Catalytic Site Predictions Based on Closeness Centrality? BMC Bioinformatics, 8, 153-166. https://doi.org/10.1186/1471-2105-8-153 |
[19] | Jansen, M., Treutner, K.H., Schmitz, B., Otto, J. and Schumpelick, V. (2004) Phospholipids Reduce Gastric Cancer Cell Adhesion to Extracellular Matrix in Vitro. BMC Gastroenterology, 4, 33-37. https://doi.org/10.1186/1471-230X-4-33 |
[20] | Tu, S., Jiang, X., Lin, M., Cui, J., Yang, Y., Lum, C., et al. (2003) Suppression of Survivin Expression Inhibits in Vivo Tumorigenicity and Angiogenesis in Gastric Cancer. Cancer Research, 63, 7724-7732. |
[21] | Takeda, H. (1990) Immunohistochemical Studies of Basement Membrane Components in Primary and Metastatic Lesions of Early Gastric Cancer. Journal of Nippon Medical School, 57, 160-171. https://doi.org/10.1272/jnms1923.57.160 |
[22] | Chung, H., Kong, H. and Lim, J.-B. (2015) Clinical Significance and Usefulness of Soluble Heparin Binding-Epidermal Growth Factor in Gastric Cancer. World Journal of Gastroenterology, 21, 2080-2088. https://doi.org/10.3748/wjg.v21.i7.2080 |
[23] | Jogestrand, T. (1980) Digoxin Concentration in Right Atrial Myocardium, Skeletal Muscle and Serum in Man: Influence of Atrial Rhythm. European Journal of Clinical Pharmacology, 17, 243-250. https://doi.org/10.1007/BF00625797 |
[24] | Roussos, E.T., Condeelis, J.S. and Antonia, P. (2011) Chemotaxis in Cancer. Nature Reviews Cancer, 11, 573-587. https://doi.org/10.1038/nrc3078 |
[25] | Duan, K.D., Li, Y.-S. and Shi, X.J. (2011) Effects of Serum from Patients with Atrial Fibrillation on Chemotaxis of Cardiac Fibroblasts. Chinese Journal of Pathophysiology, 27, 662-665. |
[26] | Lee, K., Hwang, H. and Nam, K.T. (2014) Immune Response and the Tumor Microenvironment: How They Communicate to Regulate Gastric Cancer. Gut & Liver, 8, 131-139. https://doi.org/10.5009/gnl.2014.8.2.131 |
[27] | Liu, L., Zheng, Q., Lee, J., Ma, Z., Zhu, Q. and Wang, Z. (2015) PD-1/PD-L1 Expression on CD4+ T Cells and Myeloid DCs Correlates with the Immune Pathogenesis of Atrial Fibrillation. Journal of Cellular & Molecular Medicine, 19, 1223-1233. https://doi.org/10.1111/jcmm.12467 |
[28] | Sung, B.H. and Weaver, A.M. (2017) Exosome Secretion Promotes Chemotaxis of Cancer Cells. Cell Adhesion & Migration, 11, 187-195. https://doi.org/10.1080/19336918.2016.1273307 |
[29] | Hua, Y., Drew, P. and Richard, J. (2009) STATs in Cancer Inflammation and Immunity: A Leading Role for STAT3. Nature Reviews Cancer, 11, 798-809. https://doi.org/10.1038/nrc2734 |
[30] | Kanda, N., Seno, H., Konda, Y., Marusawa, H. and Chiba, T. (2004) STAT3 Is Constitutively Activated and Supports Cell Survival in Association with Survivin Expression in Gastric Cancer Cells. Oncogene, 23, 4921-4929. https://doi.org/10.1038/sj.onc.1207606 |
[31] | Deng, J., Liang, H., Zhang, R., Sun, D., Pan, Y., Liu, Y., et al. (2013) STAT3 Is Associated with Lymph Node Metastasis in Gastric Cancer. Tumor Biology, 34, 2791-2800. https://doi.org/10.1007/s13277-013-0837-5 |
[32] | Zhang, Q., Xu, F., Shi, Y., Chen, Y.W., Wang, H.P., Yu, X., et al. (2017) C-X-C Motif Chemokine Receptor 4 Promotes Tumor Angiogenesis in Gastric Cancer via Activation of JAK2/STAT3. Cell Biology International, 41, 854-862. https://doi.org/10.1002/cbin.10794 |
[33] | Yang, L., Zhang, S., Guo, K., Huang, H., Qi, S., Yao, J., et al. (2018) miR-125a Restrains Cell Migration and Invasion by Targeting STAT3 in Gastric Cancer Cells. OncoTargets and Therapy, 12, 205-215. https://doi.org/10.2147/OTT.S168454 |
[34] | Kim, D.Y., Cha, S.T., Ahn, D.H., Kang, H.Y., Kwon, C.I., Ko, K.H., et al. (2009) STAT3 Expression in Gastric Cancer Indicates a Poor Prognosis. Journal of Gastroenterology & Hepatology, 24, 646-651. https://doi.org/10.1111/j.1440-1746.2008.05671.x |
[35] | 孙阳, 赵春临. 纤维连接蛋白1在胃癌中的表达及临床意义[J]. 医学研究生学报, 2019, 32(6): 629-633. |
[36] | Zhang, H., Sun, Z., Li, Y., Fan, D. and Jiang, H. (2017) MicroRNA-200c Binding to FN1 Suppresses the Proliferation, Migration and Invasion of Gastric Cancer Cells. Biomedicine & Pharmacotherapy, 88, 285-292. https://doi.org/10.1016/j.biopha.2017.01.023 |
[37] | Chen, H.B. and Zheng, H.T. (2017) MicroRNA-200c Represses Migration and Invasion of Gastric Cancer SGC-7901 Cells by Inhibiting Expression of Fibronectin 1. European Review for Medical and Pharmacological Sciences, 21, 1753-1758. |
[38] | Kim, M.S., Lee, S.H., Yoo, N.J. and Lee, S.H. (2013) Frameshift Mutations of Tumor Suppressor Gene EP300 in Gastric and Colorectal Cancers with High Microsatellite Instability. Human Pathology, 44, 2064-2070. https://doi.org/10.1016/j.humpath.2012.11.027 |
[39] | Tao, Y., Chen, Y.C., Li, Y.Y., Yang, S.Q. and Xu, W.R. (2008) Localization and Translocation of RhoA Protein in the Human Gastric Cancer Cell Line SGC-7901. World Journal of Gastroenterology, 14, 1175-1181. https://doi.org/10.3748/wjg.14.1175 |
[40] | Yoon, J.H., Choi, W.S., Kim, O., Choi, B.J. and Park, W.S. (2016) Gastrokine 1 Inhibits Gastric Cancer Cell Migration and Invasion by Downregulating RhoA Expression. Gastric Cancer, 20, 1-12. https://doi.org/10.1007/s10120-016-0617-1 |
[41] | Hu, L., Wu, H., Wan, X., Liu, L., He, Y., Zhu, L., et al. (2018) MicroRNA-585 Suppresses Tumor Proliferation and Migration in Gastric Cancer by Directly Targeting MAPK1. Biochemical and Biophysical Research Communications, 499, 52-58. https://doi.org/10.1016/j.bbrc.2018.03.116 |
[42] | Bojian, F. and Haorong, W. (2012) MiR-378 Inhibits Progression of Human Gastric Cancer MGC-803 Cells by Targeting MAPK1 in Vitro. Oncology Research, 20, 557-564. https://doi.org/10.3727/096504013X13775486749254 |
[43] | 卢燕华, 唐三元. miR-217靶向MAPK1抑制胃癌细胞侵袭转移作用研究[J]. 中国现代医药杂志, 2014, 16(11): 21-23. |
[44] | Pan, D.Y., Zeng, X.Q., Ma, G.F., Gao, J., Li, N., Miao, Q., et al. (2018) Label-Free Quantitative Proteomic Analysis Identifies CTNNB1 as a Direct Target of FOXP3 in Gastric Cancer Cells. Oncology Letters, 15, 7655-7660. https://doi.org/10.3892/ol.2018.8277 |
[45] | He, B., Xiao, Y.-F., Tang, B., Wu, Y.-Y., Hu, C.-J., Xie, R., et al. (2016) hTERT Mediates Gastric Cancer Metastasis Partially through the Indirect Targeting of ITGB1 by microRNA-29a. Scientific Reports, 6, 1-12. https://doi.org/10.1038/srep21955 |
[46] | Hu, C., Ni, Z., Li, B.S., Yong, X. and Yang, S.-M. (2015) hTERT Promotes the Invasion of Gastric Cancer Cells by Enhancing FOXO3a Ubiquitination and Subsequent ITGB1 Upregulation. Gut, 66, 31-42. https://doi.org/10.1136/gutjnl-2015-309322 |
[47] | Du, D., Yang, X., Wang, Q., Dai, W., Kuai, W., Liu, Y.L., et al. (2016) Effects of CDC42 on the Proliferation and Invasion of Gastric Cancer Cells. Molecular Medicine Reports, 13, 550-554. https://doi.org/10.3892/mmr.2015.4523 |
[48] | Cheng, Z., Liu, F., Wang, G., Li, Y., Zhang, H. and Li, F. (2014) miR-133 Is a Key Negative Regulator of CDC42-PAK Pathway in Gastric Cancer. Cellular Signalling, 26, 2667-2673. https://doi.org/10.1016/j.cellsig.2014.08.012 |
[49] | Li, X., Jiang, M., Chen, D., Xu, B., Wang, R., Chu, Y., et al. (2018) miR-148b-3p Inhibits Gastric Cancer Metastasis by Inhibiting the Dock6/Rac1/Cdc42 Axis. Journal of Experimental & Clinical Cancer Research, 37, 71-85. https://doi.org/10.1186/s13046-018-0729-z |
[50] | Tahara, T., Shibata, T., Okamoto, Y., Yamazaki, J. and Ohmiya, N. (2016) Mutation Spectrum of TP53 Gene Predicts Clinicopathological Features and Survival of Gastric Cancer. Oncotarget, 7, 42252-42260. https://doi.org/10.18632/oncotarget.9770 |
[51] | Abdalla, L.F., Santos, J.H.A., Barreto, R.T.J., Souza, E.M., D’Assuncao, F.F., Borges, M.A., et al. (2018) Atrial Fibrillation in a Patient with Zika Virus Infection. Virology Journal, 15, 23-28. https://doi.org/10.1186/s12985-018-0938-2 |
[52] | Xu, J.B., Zhang, C.H., He, Y.L., Hui, W., Zhao, W., Wu, S., et al. (2015) Lymphatic Endothelial Cell-Secreted CXCL1 Stimulates Lymphangiogenesis and Metastasis of Gastric Cancer. International Journal of Cancer, 130, 787-797. https://doi.org/10.1002/ijc.26035 |
[53] | Wang, Z., Wang, Z., Li, G., Wu, H., Sun, K., Chen, J., et al. (2017) CXCL1 from Tumor-Associated Lymphatic Endothelial Cells Drives Gastric Cancer Cell into Lymphatic System via Activating Integrin β1/FAK/AKT Signaling. Cancer Letters, 385, 28-38. https://doi.org/10.1016/j.canlet.2016.10.043 |
[54] | Wei, Z.W., Xia, G.K., Wu, Y., Chen, W., Xiang, Z., Schwarz, R.E., et al. (2015) CXCL1 Promotes Tumor Growth through VEGF Pathway Activation and Is Associated with Inferior Survival in Gastric Cancer. Cancer Letters, 359, 335-343. https://doi.org/10.1016/j.canlet.2015.01.033 |
[55] | Wang, Z., Liu, H., Shen, Z., Wang, X., Zhang, H., Qin, J., et al. (2015) The Prognostic Value of CXC-Chemokine Receptor 2 (CXCR2) in Gastric Cancer Patients. BMC Cancer, 15, 766-773. https://doi.org/10.1186/s12885-015-1793-9 |
[56] | Wang, J., Hu, W., Wang, K., Yu, J., Luo, B., Luo, G., et al. (2016) Repertaxin, an Inhibitor of the Chemokine Receptors CXCR1 and CXCR2, Inhibits Malignant Behavior of Human Gastric Cancer MKN45 Cells in Vitro and in Vivo and Enhances Efficacy of 5-Fluorouracil. International Journal of Oncology, 48, 1341-1352. https://doi.org/10.3892/ijo.2016.3371 |
[57] | Li, Z., Wang, Y., Dong, S., Ge, C., Xiao, Y., Li, R., et al. (2014) Association of CXCR1 and 2 Expressions with Gastric Cancer Metastasis in Ex Vivo and Tumor Cell Invasion in Vitro. Cytokine, 69, 6-13. https://doi.org/10.1016/j.cyto.2014.05.004 |
[58] | Xiang, Z., Zhou, Z.J., Xia, G.K., Zhang, X.H., Wei, Z.W., Zhu, J.T., et al. (2017) A Positive Crosstalk between CXCR4 and CXCR2 Promotes Gastric Cancer Metastasis. Oncogene, 36, 1-12. https://doi.org/10.1038/onc.2017.108 |
[59] | Wang, X.X., Zhang, F.R., Zhu, J.H., Xie, X.D. and Chen, J.Z. (2009) Up-Regulation of CXC Chemokine Receptor 4 Expression in Chronic Atrial Fibrillation Patients with Mitral Valve Disease May Be Attenuated by Renin-Angiotensin System Blockers. Journal of International Medical Research, 37, 1145-1151. https://doi.org/10.1177/147323000903700419 |