全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抗菌肽与断奶仔猪的肠道健康
Antimicrobial Peptides and the Gastrointestinal Health of Weaned Piglets

DOI: 10.12677/ACRPVM.2019.84007, PP. 47-54

Keywords: 抗菌肽,断奶仔猪,肠道,生长,健康
Antimicrobial Peptide
, Weaned Piglets, Intestinal Tract, Growth, Health

Full-Text   Cite this paper   Add to My Lib

Abstract:

现代养殖模式下,断奶仔猪的免疫功能尚未发育成熟,加之断奶应激的负面影响较大,因此,为了促进断奶仔猪的生长、防治疾病,生产中通常会使用抗生素。但抗生素滥用造成的药物残留、病原微生物的耐药性等问题,严重威胁畜牧生产和人类健康,迫使人类寻找抗生素的替代物。由于抗菌肽具有抗菌谱广、不易产生耐药性、几乎无毒副作用等优点,使其成为了极有希望替代抗生素的物质。本文从抗菌肽抗病、促生长、改善肠道微生态、改善肠道粘膜,以及提高机体免疫功能等方面综述其在断奶仔猪中的研究进展。
In the modern pig industry, the immune function of piglets has not yet been mature when they are weaned at 3 to 4 weeks of age, and piglets are always challenged by postweaning stress. Therefore, in-feed antibiotic use is a common practice for improving growth performance and preventing disease of weaned piglets. However, the problem of drug residues and drug resistance caused by antibiotic abuse has seriously threatened livestock production and human health, forcing people to find alternatives to antibiotics. Antibacterial peptides have become a promising alternative for antibiotics because they have many advantages, such as broad antimicrobial spectrum, not easy to produce drug resistance, and almost non-toxic effects. Recent progresses on antimicrobial peptide in weaned piglets production will be discussed in this review including the reducing susceptibility to disease, growth promoting, ameliorating intestinal microecology, improvement of the intestinal mucosa, improving the immune function of piglets and prospects.

References

[1]  Johnson, J.S. and Lay, D.C. (2017) Evaluating the Behavior, Growth Performance, Immune Parameters, and Intestinal Morphology of Weaned Piglets after Simulated Transport and Heat Stress When Antibiotics Are Eliminated from the Diet or Replaced with L-Glutamine. Journal of Animal Science, 95, 91-102.
https://doi.org/10.2527/jas.2016.1070
[2]  Heo, J.M., Opapwju, F.O., Pluske, J.R., et al. (2013) Gastrointestinal Health and Function in Weaned Pigs: A Review of Feeding Strategies to Control Post-Weaning Diarrhoea without Using In-Feed Antimicrobial Compounds. Journal of Animal Physiology and Animal Nutrition (Berl), 97, 207-237.
https://doi.org/10.1111/j.1439-0396.2012.01284.x
[3]  Britton, R.A. and Young, V.B. (2014) Role of the Intestinal Microbiota in Resistance to Colonization by Clostridium Difficile. Gastroenterology, 146, 1547-1553.
https://doi.org/10.1053/j.gastro.2014.01.059
[4]  Stensland, I., Kim, J.C., Bowwring, B., et al. (2015) A Comparison of Diets Supplemented with a Feed Additive Containing Organic Acids, Cinnamaldehyde and a Permeabilizing Complex, or Zinc Oxide, on Post-Weaning Diarrhoea, Selected Bacterial Populations, Blood Measures and Performance in Weaned Pigs Experimentally Infected with Enterotoxigenic E. coli. Animals (Basel), 5, 1147-1168.
https://doi.org/10.3390/ani5040403
[5]  Smith, F., Clark, J.E., Overman, B.L., et al. (2010) Early Weaning Stress Impairs Development of Mucosal Barrier Function in the Porcine Intestine. Ameri-can Journal of Physiology-Gastrointestinal and Liver Physiology, 298, G352-G363.
https://doi.org/10.1152/ajpgi.00081.2009
[6]  Chen, J.S., Li, Y., Tian, Y.N., et al. (2015) Interaction between Microbes and Host Intestinal Health: Modulation by Dietary Nutrients and Gut-Brain-Endocrine-Immune Axis. Current Protein & Peptide Science, 16, 592-603.
https://doi.org/10.2174/1389203716666150630135720
[7]  Lin, J. (2011) Effect of Antibiotic Growth Promoters on Intestinal Microbiota in Food Animals: A Novel Model for Studying the Relationship between Gut Microbiota and Human Obesity. Frontiers in Microbiology, 2, 53.
https://doi.org/10.3389/fmicb.2011.00053
[8]  Vondruskova, H., Slamova, R., Trckova, M., et al. (2010) Alternatives to Antibi-otic Growth Promoters in Prevention of Diarrhoea in Weaned Piglets: A Review. Veterinarni Medicina, 55, 199-224.
https://doi.org/10.17221/2998-VETMED
[9]  Yin, X., Song, F., Gong, Y., et al. (2013) A Systematic Review of Antibiotic Uti-lization in China. Journal of Antimicrobial Chemotherapy, 68, 2445-2452.
https://doi.org/10.1093/jac/dkt223
[10]  Gill, E.E., Franco, O.L. and Hancock, R.E. (2015) Hancock, Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens. Chemical Biology & Drug Design, 85, 56-78.
https://doi.org/10.1111/cbdd.12478
[11]  Rakotoharinome, M., Pognon, D., Ran-driamparany, T., et al. (2014) Prevalence of Antimicrobial Residues in Pork Meat in Madagascar. Tropical Animal Health and Produc-tion, 46, 49-55.
https://doi.org/10.1007/s11250-013-0445-9
[12]  Liu, X., Steele, J.C. and Meng, X.Z. (2017) Usage, Residue, and Human Health Risk of Antibiotics in Chinese Aquaculture: A Review. Environmental Pollution, 223, 161-169.
https://doi.org/10.1016/j.envpol.2017.01.003
[13]  Qin, Y., Jatamunua, F., Zhang, J., et al. (2017) Analysis of Sulfonamides, Tilmicosin and Avermectins Residues in Typical Animal Matrices with Multi-Plug Filtration Cleanup by Liquid Chromatog-raphy-Tandem Mass Spectrometry Detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sci-ences, 1053, 27-33.
https://doi.org/10.1016/j.jchromb.2017.04.006
[14]  Gajda, A., Nowacka-Kozak, E., Gbylik-Sikorska, M., et al. (2018) Tetracy-cline Antibiotics Transfer from Contaminated Milk to Dairy Products and the Effect of the Skimming Step and Pasteurisation Process on Residue Concentrations. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 35, 66-76.
https://doi.org/10.1080/19440049.2017.1397773
[15]  Thacker, P.A. (2013) Alternatives to Antibiotics as Growth Promoters for Use in Swine Production: A Review. Journal of Animal Science and Biotechnology, 4, 35.
https://doi.org/10.1186/2049-1891-4-35
[16]  Fjell, C.D., Hiss, J.A., Hancock, R.E., et al. (2011) Designing Antimicrobial Pep-tides: Form Follows Function. Nature Reviews Drug Discovery, 11, 37-51.
https://doi.org/10.1038/nrd3591
[17]  Brandwein, M., Bentwich, Z. and Steinberg, D. (2017) Endogenous Antimicrobial Peptide Expression in Response to Bacterial Epidermal Colonization. Frontiers in Immunology, 8, 1637.
https://doi.org/10.3389/fimmu.2017.01637
[18]  Deng, Z. and Xu, C. (2017) Role of the Neu-roendocrine Antimicrobial Peptide Catestatin in Innate Immunity and Pain. Acta Biochimica et Biophysica Sinica (Shanghai), 49, 967-972.
https://doi.org/10.1093/abbs/gmx083
[19]  Fitschen-Oestern, S., Weuster, M., Lippross, S., et al. (2017) Hepatocytes Express the Antimicrobial Peptide HBD-2 after Multiple Trauma: An Experimental Study in Human and Mice. BMC Musculoskeletal Disorders, 18, 100.
https://doi.org/10.1186/s12891-017-1458-8
[20]  Oliveira-Lima, M., Benko-Iseppon, A.M., Neto, J., et al. (2017) Snakin: Struc-ture, Roles and Applications of a Plant Antimicrobial Peptide. Current Protein & Peptide Science, 18, 368-374.
https://doi.org/10.2174/1389203717666160619183140
[21]  Pollini, S., Brunetti, J., Sennati, S., et al. (2017) Synergistic Activity Profile of an Antimicrobial Peptide against Multidrug-Resistant and Extensively Drug-Resistant Strains of Gram-Negative Bacterial Pathogens. Journal of Peptide Science, 23, 329-333.
https://doi.org/10.1002/psc.2978
[22]  He, X., Zhang, H., Shi, Y., et al. (2016) A Novel Antimicrobial Peptide Derived from Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1. Biochimie, 123, 110-116.
https://doi.org/10.1016/j.biochi.2016.02.006
[23]  Rossi, D.C., Munoz, J.E., Carvalho, D.D., et al. (2012) Therapeutic Use of a Cationic Antimicrobial Peptide from the Spider Acanthoscurria gomesiana in the Control of Experimental Candidiasis. BMC Microbi-ology, 12, 28.
https://doi.org/10.1186/1471-2180-12-28
[24]  Jia, J., Zheng, Y., Wang, W., et al. (2017) Antimicrobial Peptide LL-37 Promotes YB-1 Expression, and the Viability, Migration and Invasion of Malignant Melanoma Cells. Molecular Medicine Reports, 15, 240-248.
https://doi.org/10.3892/mmr.2016.5978
[25]  Shah, Y., Sehgal, D. and Valadi, J.K. (2017) Recent Trends in Antimicrobial Peptide Prediction Using Machine Learning Techniques. Bioinformation, 13, 415-416.
https://doi.org/10.6026/97320630013415
[26]  Mello, C.P., Lima, D.B., Menezes, R.R., et al. (2017) Evaluation of the An-tichagasic Activity of Batroxicidin, a Cathelicidin-Related Antimicrobial Peptide found in Bothrops atrox Venom Gland. Toxicon, 130, 56-62.
https://doi.org/10.1016/j.toxicon.2017.02.031
[27]  Dong, N., Wang, Z., Chou, S., et al. (2017) Antibacterial Activities and Mo-lecular Mechanism of Amino-Terminal Fragments from Pig Nematode Antimicrobial Peptide CP-1. Chemical Biology & Drug Design, 91, 1017-1029.
https://doi.org/10.1111/cbdd.13165
[28]  Yang, D., Zha, G., Li, X., et al. (2017) Immune Responses in the Haemolymph and Antimicrobial Peptide Expression in the Abdomen of Apis mellifera Challenged with Spiroplasma melliferum CH-1. Microbial Patho-genesis, 112, 279-287.
https://doi.org/10.1016/j.micpath.2017.10.006
[29]  Yoon, J.H., Ingale, S.L., Kim, J.S., et al. (2014) Ef-fects of Dietary Supplementation of Synthetic Antimicrobial Peptide-A3 and P5 on Growth Performance, Apparent Total Tract Digesti-bility of Nutrients, Fecal and Intestinal Microflora and Intestinal Morphology in Weanling Pigs. Livestock Science, 159, 53-60.
https://doi.org/10.1016/j.livsci.2013.10.025
[30]  Yu, H.T., Ding, X.L., Li, N., et al. (2017) Dietary Supplemented Antimicrobial Peptide Microcin J25 Improves the Growth Performance, Apparent Total Tract Digestibility, Fecal Microbiota, and Intestinal Barrier Function of Weaned Pigs. Journal of Animal Science, 95, 5064-5076.
https://doi.org/10.2527/jas2017.1494
[31]  Xiong, X., Yang, H.S., Li, L., et al. (2014) Effects of Antimicrobial Peptides in Nursery Diets on Growth Performance of Pigs Reared on Five Different Farms. Livestock Science, 167, 206-210.
https://doi.org/10.1016/j.livsci.2014.04.024
[32]  Wu, S., Zhang, F., Huang, Z., et al. (2012) Effects of the Antimicrobial Peptide Cecropin AD on Performance and Intestinal Health in Weaned Piglets Challenged with Escherichia coli. Peptides, 35, 225-230.
https://doi.org/10.1016/j.peptides.2012.03.030
[33]  Zhang, H., Zhang, B., Zhang, X., et al. (2017) Effects of Cathelicidin-Derived Peptide from Reptiles on Lipopolysaccharide-Induced Intestinal Inflammation in Weaned Piglets. Veterinary Immunology and Im-munopathology, 192, 41-53.
https://doi.org/10.1016/j.vetimm.2017.09.005
[34]  Xiao, H., Tan, B.E., Wu, M.M., et al. (2013) Effects of Composite Antimicro-bial Peptides in Weanling Piglets Challenged with Deoxynivalenol: II. Intestinal Morphology and Function. Journal of Animal Science, No. 10, 4750-4756.
https://doi.org/10.2527/jas.2013-6427
[35]  朱伟云, 余凯凡, 慕春龙, 等. 猪的肠道微生物与畜主营养代谢[J]. 动物营养学报, 2014, 26(10): 3046-3051.
[36]  Tao, X., Xu, Z. and Wan, J. (2015) Intestinal Microbiota Diversity and Expression of Pattern Recognition Receptors in Newly Weaned Piglets. Anaerobe, 32, 51-56.
https://doi.org/10.1016/j.anaerobe.2014.12.005
[37]  Franklin, M.A., Mathew, A.G., Vickers, J.R., et al. (2002) Characterization of Microbial Populations and Volatile Fatty Acid Concentrations in the Jejunum, Ileum, and Cecum of Pigs Weaned at 17 vs 24 Days of Age. Journal of Animal Science, 80, 2904-2910.
https://doi.org/10.2527/2002.80112904x
[38]  徐子伟. 仔猪肠道损伤修复营养调控及其机制和应用[J]. 动物营养学报, 2014, 26(10): 3033-3045.
[39]  Hentges, D.J., Marsh, W.W., Petschow, B.W., et al. (1992) Influence of Infant Diets on the Ecology of the Intestinal Tract of Human Flora-Associated Mice. Journal of Pediatric Gastroenterology and Nutrition, 14, 146-152.
https://doi.org/10.1097/00005176-199202000-00005
[40]  Hu, W., Zhao, J., Wang, J., et al. (2012) Transgenic Milk Containing Recombinant Human Lactoferrin Modulates the Intestinal Flora in Piglets. Biochemistry and Cell Biology, 90, 485-496.
https://doi.org/10.1139/o2012-003
[41]  汪以真. 猪乳铁蛋白基因克隆、表达及其产物对断奶仔猪生长、免疫和抗菌肽基因表达影响到研究[D]: [博士学位论文]. 杭州: 浙江大学, 2004.
[42]  Everaert, N., Van Cruchten, S., Westrom, B., et al. (2017) A Review on Early Gut Maturation and Colonization in Pigs, Including Biological and Dietary Factors Affecting Gut Homeostasis. Ani-mal Feed Science and Technology, 233, 89-103.
https://doi.org/10.1016/j.anifeedsci.2017.06.011
[43]  Flis, M., Sobotka, W., Antoszkiewicz, Z., et al. (2017) Fiber Substrates in the Nutrition of Weaned Piglets—A Review. Annals of Animal Science, 17, 627-643.
https://doi.org/10.1515/aoas-2016-0077
[44]  易宏波. 抗菌肽CWA对断奶仔猪肠道炎症和肠道屏障功能的作用及其机制[D]: [博士学位论文]. 杭州: 浙江大学, 2016.
[45]  Tang, Z.R., Deng, H., Zhang, X.L., et al. (2013) Effects of Orally Ad-ministering the Antimicrobial Peptide Buforin II on Small Intestinal Mucosal Membrane Integrity, the Expression of Tight Junction Proteins and Protective Factors in Weaned Piglets Challenged by Enterotoxigenic Escherichia coli. Animal Feed Science and Technolo-gy, 186, 177-185.
https://doi.org/10.1016/j.anifeedsci.2013.10.012
[46]  Yoon, J.H., Ingale, S.L., Kim, J.S., et al. (2013) Effects of Dietary Supple-mentation with Antimicrobial Peptide-P5 on Growth Performance, Apparent Total Tract Digestibility, Faecal and Intestinal Microflora and Intestinal Morphology of Weanling Pigs. Journal of the Science of Food and Agriculture, 93, 587-592.
https://doi.org/10.1002/jsfa.5840
[47]  朱健, 刘超群, 刘瑞奇, 等. 抗菌肽免疫调节功能的研究进展[J]. 黑龙江畜牧兽医, 2018(1): 77-79.
[48]  Ren, Z.H., Yuan, W., Deng, H.D., et al. (2015) Effects of Antibacterial Peptide on Cellular Immunity in Weaned Piglets. Journal of Animal Science, 93, 127-134.
https://doi.org/10.2527/jas.2014-7933
[49]  Shan, T., Wang, Y., Liu, J., et al. (2007) Effect of Dietary Lactoferrin on the Immune Functions and Serum Iron Level of Weanling Piglets. Journal of Animal Science, 85, 2140-2146.
https://doi.org/10.2527/jas.2006-754
[50]  Worthington, J.J., Reimann, F. and Gribble, F.M. (2018) Enteroendocrine Cells-Sensory Sentinels of the Intestinal Environment and Orchestrators of Mucosal Immunity. Mucosal Immunology, 11, 3-20.
https://doi.org/10.1038/mi.2017.73
[51]  Drutskaya, M.S., Efimov, G.A., Astrakhantseva, I.V., et al. (2018) Making An-ti-Cytokine Therapy More Selective: Studies in Mice. Cytokine, 101, 33-38.
https://doi.org/10.1016/j.cyto.2016.08.022
[52]  袁威, 任志华, 邓又天, 等. 复合抗菌肽对断奶仔猪生长性能及血清细胞因子含量的影响[J]. 动物营养学报, 2015(3): 885-892.
[53]  崔艳红, 韩庆功, 崔艺佳, 等. 益生菌复合发酵料对断奶仔猪消化环境、血清生化指标和代谢激素水平的影响[J]. 西北农业学报, 2018, 27(1): 16-23.
[54]  范明东, 李元凤, 敖翔, 等. 益生菌和低聚木糖在断奶仔猪上的应用研究[J]. 养猪, 2017(2): 10-16.
[55]  Hou, C., Liu, H., Zhang, J., et al. (2015) Intestinal Microbiota Succession and Immunomodulatory Consequences after Introduction of Lactobacillus reuteri I5007 in Neonatal Piglets. PLoS ONE, 10, e0119505.
https://doi.org/10.1371/journal.pone.0119505
[56]  Liu, H., Hou, C., Wang, G., et al. (2017) Lactobacillus reuteri I5007 Modu-lates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets. Nutrients, 9, 559.
https://doi.org/10.3390/nu9060559
[57]  Xu, J., Zhong, F., Zhang, Y., et al. (2017) Construction of Bacillus subtilis Strain Engi-neered for Expression of Porcine Beta-Defensin-2/Cecropin P1 Fusion Antimicrobial Peptides and Its Growth-Promoting Effect and Antimicrobial Activity. Asian-Australas Journal of Animal Science, 30, 576-584.
https://doi.org/10.5713/ajas.16.0207
[58]  Sun, B.D., Wibowo, D., Middelberg, A.P.J., et al. (2018) Cost-Effective Downstream Processing of Recombinantly Produced Pexiganan Peptide and Its Antimicrobial Activity. AMB Express, 8, 6.
https://doi.org/10.1186/s13568-018-0541-3
[59]  Severino, P., Ariga, S.K., Barbeiro, H.V., et al. (2017) Cathelicidin-Deficient Mice Exhibit Increased Survival and Upregulation of Key Inflammatory Response Genes Following Cecal Ligation and Puncture. Journal of Molecular Medicine, 95, 995-1003.
https://doi.org/10.1007/s00109-017-1555-z
[60]  Hashimoto, S., Uto, H., Kanmura, S., et al. (2012) Human Neutrophil Peptide-1 Aggravates Dextran Sulfate Sodium-Induced Colitis. Inflammatory Bowel Diseases, 18, 667-675.
https://doi.org/10.1002/ibd.21855
[61]  Garcia, J.R., Krause, A., Schulz, S., et al. (2001) Human Beta-Defensin 4: A Novel Inducible Peptide with a Specific Salt-Sensitive Spectrum of Antimicrobial Activity. The FASEB Journal, 15, 1819-1821.
https://doi.org/10.1096/fj.00-0865fje
[62]  Schmid, M., Fellermann, K., Fritz, P., et al. (2007) Attenuated Induction of Epithelial and Leukocyte Serine Antiproteases Elafin and Secretory Leukocyte Protease Inhibitor in Crohn’s Disease. Journal of Leukocyte Biolo-gy, 81, 907-915.
https://doi.org/10.1189/jlb.0906581
[63]  Arijs, I., De Hertogh, G., Lemaire, K., et al. (2009) Mucosal Gene Expression of Antimicrobial Peptides in Inflammatory Bowel Disease before and after First Infliximab Treatment. PLoS ONE, 4, e7984.
https://doi.org/10.1371/journal.pone.0007984

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413