|
转位蛋白及其配体在神经精神疾病中作用
|
Abstract:
[1] | Li, F., Liu, J., Liu, N., Kuhn, L.A., Garavito, R.M. and Ferguson-Miller, S. (2016) Translocator Protein 18 kDa (TSPO): An Old Protein with New Functions? Biochemistry, 55, 2821-2831.
https://doi.org/10.1021/acs.biochem.6b00142 |
[2] | Batarseh, A. and Papadopdulos, V. (2010) Regulation of Translocator Protein 18 kDa (TSPO) Expression in Health and Disease States. Molecular and Cellular Endocrinology, 327, 1-12. https://doi.org/10.1016/j.mce.2010.06.013 |
[3] | Morin, D., Musman, J., Pons, S., Berdeaux, A. and Ghaleh, B. (2016) Mitochondrial Translocator Protein (TSPO): From Physiology to Cardioprotection. Biochemical Pharmacology, 105, 1-13.
https://doi.org/10.1016/j.bcp.2015.12.003 |
[4] | Olga, V.C. and Wenbin, D. (2016) Mitochondrial Translocator Protein (TSPO), Astrocytes and neuroinflammation. Neural Regeneration Research, 11, 1056-1057. https://doi.org/10.4103/1673-5374.187027 |
[5] | Zhan, A.H., Tu, L.N., Mukai, C., Sirivelu, M.P., Pillai, V.V., Morohaku, K., Cohen, R. and Selvaraj, V. (2016) Mitochondrial Translocator Protein (TSPO) Function Is Not Essential for Heme Biosynthesis. The Journal of Biological Chemistry, 291, 1591-1603. https://doi.org/10.1074/jbc.M115.686360 |
[6] | Hamelin, L., Lagarde, J., Dorothee, G., et al. (2018) Distinct Dynamic Profiles of Microglial Activation Are Associated with Progression of Alzheimer’s Disease. Brain, 141, 1855-1870. https://doi.org/10.1093/brain/awy079 |
[7] | Jin, G.-L., He, S.-D., Lin, S.-M., et al. (2018) Koumine Attenuates Neuroglia Activation and Inflammatory Response to Neuropathic Pain. Neural Plasticity, 5, Article ID: 9347696. https://doi.org/10.1155/2018/9347696 |
[8] | Zeng, J., Guareschi, R., Damre, M., et al. (2018) Structural Prediction of the Dimeric Form of the Mammalian Translocator Membrane Protein TSPO: A Key Target for Brain Diagnostics. International Journal of Molecular Sciences, 19, 2588. https://doi.org/10.3390/ijms19092588 |
[9] | Coste, B., Dapozzo, E., Giacomelli, C., et al. (2016) TSPO Ligand Residence Time: A New Parameter to Predict Compound Neurosteroidogenic Efficacy. Scientific Reports, 6, Article No. 18164. https://doi.org/10.1038/srep18164 |
[10] | Verleye, M., Dumas, S., Heulard, I., et al. (2011) Differential Effects of Etifoxine on Anxiety-Like Behavior and Convulsions in BALB/cByJ and C57BL/6J Mice: Any Relation to Overexpression of Central GABAA Receptor Beta2 Subunits? European Neuropsychopharmacology, 21, 457-470. https://doi.org/10.1016/j.euroneuro.2010.09.008 |
[11] | Filiou, M.D., Banati, R.B. and Graeber, M.B. (2017) The 18-kDa Translocator Protein as a CNS Drug Target: Finding Our Way Through the Neuroinflammation Fog. CNS Neurological Disorders Drug Targets, 16, 990-999.
https://doi.org/10.2174/1871527316666171004125107 |
[12] | Bonsack, F., Alleyne, C.H. and Sukumar, S. (2016) Augmented Expression of TSPO after Intracerebral Hemorrhage: A Role in Inflammation? Journal of Neuroinflammation, 13, 151. https://doi.org/10.1186/s12974-016-0619-2 |
[13] | Veiga, S., Azcoitia, I. and Garcia, L.M. (2005) Ro5-4864, a Peripheral Benzodiazepine Receptor Ligand, Reduces Reactive Gliosis and Protects Hippocampal Hilar Neurons from Kainic Acid Excitotoxicity. Journal of Neuroscience Research, 80, 129-137. https://doi.org/10.1002/jnr.20430 |
[14] | Leaver, K.R., Reynolds, A., Bodard, S., Guilloteau, D., Chalon, S. and Kassiou, M. (2012) Effects of Translocator Protein (18 kDa) Ligands on Microglial Activation and Neuronal Death in the Quinolinic-Acid-Injected Rat Striatum. ACS Chemical Neuroscience, 3, 114-119. https://doi.org/10.1021/cn200099e |
[15] | Gong, J., Szeg?, é.M., Leonov, A., et al. (2019) Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. Journal of Neuroscience, 2, 2070-2018.
https://doi.org/10.1523/JNEUROSCI.2070-18.2019 |
[16] | Lenglet, T., Lacomblez, L., Abitbol, J.L., et al. (2014) A Phase II-III Trial of Olesoxime in Subjects with Amyotrophic Lateral Sclerosis. European Journal of Neurology, 21, 529-536. https://doi.org/10.1111/ene.12344 |
[17] | Kapanadze, T., Bankstahl, J.P., Wittneben, A., et al. (2019) Multimodal and Multiscale Analysis Reveals Distinct Vascular, Metabolic and Inflammatory Components of the Tissue Response to Limb Ischemia. Theranostics, 9, 152-166. https://doi.org/10.7150/thno.27175 |
[18] | Locci, A. and Pinna, G. (2017) Neurosteroid Biosynthesis Down-Regulation and Changes in GABAA Receptor Subunit Composition: A Biomarker Axis in Stress-Induced Cognitive and Emotional Impairment. British Journal of Pharmacology, 174, 3226-3241. https://doi.org/10.1111/bph.13843 |
[19] | Nothdurfter, C., Baghai, T.C., Schüle, C. and Rupprecht, R. (2012) Translocator Protein (18 kDa) (TSPO) as a Therapeutic Target for Anxiety and Neurologic Disorders. European Archives of Psychiatry and Clinical Neuroscience, 262, S107-S12. https://doi.org/10.1007/s00406-012-0352-5 |
[20] | Poisbeau, P., Gazzo, G. and Calvel, L. (2018) Anxiolytics Targeting GABAA Receptors: Insights on Etifoxine. The World Journal of Biological Psychiatry, 19, S36-S45. https://doi.org/10.1080/15622975.2018.1468030 |
[21] | Li, X.-B., Liu, A., Yang, L., et al. (2018) Antidepressant-Like Effects of Translocator Protein (18 kDa) Ligand ZBD-2 in Mouse Models of Postpartum Depression. Molecular Brain, 11, 1-12. https://doi.org/10.1186/s13041-018-0355-x |
[22] | Zhang, L.-M., Qiu, Z.-K., Zhao, N., et al. (2014) Anxiolytic-Like Effects of YL-IPA08, a Potent Ligand for the Translocator Protein (18 kDa) in Animal Models of Post-Traumatic Stress Disorder. International Journal of Neuropsychopharmacology, 17, 1659-1669. https://doi.org/10.1017/S1461145714000479 |
[23] | Luo, L.-F., Weng, J.-F., Cen, M., et al. (2019) Prognostic Significance of Serum Translocator Protein in Patients with Traumatic Brain Injury. Clinica Chimica Acta, 488, 25-30. https://doi.org/10.1016/j.cca.2018.10.035 |
[24] | Palzur, E., Sharon, A., Shehadeh, M. and Soustiel, J.F. (2016) Investigation of the Mechanisms of Neuroprotection Mediated by Ro5-4864 in Brain Injury. Neuroscience, 329, 162-170.
https://doi.org/10.1016/j.neuroscience.2016.05.014 |
[25] | Li, X.-M., Meng, J., Li, L.-T., et al. (2017) Effect of ZBD-2 on Chronic Pain, Depressive-Like Behaviors, and Recovery of Motor Function Following Spinal Cord Injury in Mice. Behavioural Brain Research, 30, 92-99.
https://doi.org/10.1016/j.bbr.2017.01.025 |
[26] | Pigeon, H., Pérès, E.A., Truillet, C., et al. (2019) TSPO-PET and Diffusion-Weighted MRI for Imaging a Mouse Model of Infiltrative Human Glioma. Neuro-Oncology, 2, noz029. https://doi.org/10.1093/neuonc/noz029 |
[27] | Zeno, S., Zaaroor, M., Leschiner, S., Veenman, L. and Gavish, M. (2009) CoCl2 Induces Apoptosis via the 18 kDa Translocator Protein in U118MG Human Glioblastoma Cells. Biochemistry, 48, 4652-4661.
https://doi.org/10.1021/bi900064t |
[28] | Daugherty, D.J., Selvaraj, V., Chechneva, O.V., et al. (2013) A TSPO Ligand Is Protective in a Mouse Model of Multiple Sclerosis. EMBO Molecular Medicine, 5, 891-903. https://doi.org/10.1002/emmm.201202124 |
[29] | Abid, K.A., Sobowale, O.A., Parkes, L.M., et al. (2018) Assessing Inflammation in Acute Intracerebral Hemorrhage with PK11195 PET and Dynamic Contrast-Enhanced MRI. Journal of Neuroimaging, 28, 158-161.
https://doi.org/10.1111/jon.12477 |