全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review on Electrodynamic Influence of Atmospheric Processes to the Ionosphere

DOI: 10.4236/ojer.2020.92008, PP. 113-141

Keywords: Earthquake (EQ) Precursors, Charged Aerosol Injection, Global Electric Circuit, Ionospheric Irregularities, ULF/ELF Electromagnetic Emissions, Ran-dom Discharges Radiation, Over-the-Horizon VHF Propagation

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work is an attempt to critically analyze the existing theoretical models of the impact of earthquake preparation processes on the state of the earth’s atmosphere and ionosphere in the zone of growing seismic activity, as well as the mechanisms of formation and transfer of disturbances in various media over the earthquake center. The determining factor (criterion) of the analysis is the degree of compliance of the simulation results with experimental data obtained at various phases of earthquake development by direct and remote diagnostic methods using ground and aerospace technologies. The key role is played by the model’s compliance with the results of measuring electric fields and currents in the near-ground atmosphere and ionosphere, small-scale ionospheric inhomogeneities and correlated field-aligned currents and electromagnetic ULF/ELF emissions. A full-fledged model should also explain the origin of such seismic related phenomena as the generation in the troposphere and over-horizon propagation of pulsed VHF radiation, thermal effects and associated IR emissions as well as the modification of plasma distribution in the D, E and F layers of the ionosphere. The use of this criterion in the analysis allowed us to identify a theoretical model that most fully describes the totality of the above-mentioned experimental data within a single physical mechanism. This is an electrodynamic model based on the perturbation of the conductivity current in the global atmosphere—ionosphere electric circuit due to the injection of charged aerosols into the atmosphere during the preparation and development of an earthquake. The present paper describes this model and the formation mechanisms of related phenomena in the atmosphere and ionosphere, which can be considered as short-term precursors to earthquakes.

References

[1]  Molchanov, O.A. and Hayakawa, M. (2008) Seismo Electromagnetics and Related Phenomena: History and Latest Results. TERRAPUB, Tokyo.
[2]  Gokhberg, M.B. and Shalimov, L.S. (2000) Lithosphere-Ionosphere Coupling and Their Modelling. Russian Journal of Earth Sciences, 2, 95-108.
https://doi.org/10.2205/2000ES000032
[3]  Molchanov, O., Fedorov, E., Schekotov, A., Gordeev, E., Chebrov, V., Surkov, V., Rozhnoi, A., Andreevsky, S., Iudin, D., Yunga, S., Lutikov, A., Hayakawa, M. and Biagi, P.F. (2004) Lithosphere-Atmosphere-Ionosphere Coupling as Governing Mechanism for Preseismic Short-Term Events in Atmosphere and Ionosphere. Natural Hazards Earth System Sciences, 4, 757-767.
https://doi.org/10.5194/nhess-4-757-2004
[4]  Molchanov, O.A. (2009) Lithosphere-Atmosphere-Ionosphere Coupling Due to Seismicity. In: Hayakawa, M., Ed., Electromagnetic Phenomena Associated with Earthquakes, Transworld Research Network, Trivandrum, 255-279.
[5]  Devi, M., Barbara, K., Ruzhin, Y.Y. and Hayakawa, M. (2012) Over-the-Horizon Anomalous VHF Propagation and Earthquake Precursors. Surveys in Geophysics, 33, 1081-1106.
https://doi.org/10.1007/s10712-012-9185-z
[6]  Rozhnoi, A., Solovieva, M., Molchanov, O.A. and Hayakawa, M. (2004) Middle Latitude LF(40kHz) Phase Variations Associated with Earthquakes for Quiet and Disturbed Geomagnetic Conditions. Physics and Chemistry of the Earth, 29, 589-598.
https://doi.org/10.1016/j.pce.2003.08.061
[7]  Schekotov, A., Molchanov, O., Hattori, K., Fedorov, E., Gladyshev, V.A., Belyaev, G.G., Chebrov, V., Sinitsin, V., Gordeev, E. and Hayakawa, M. (2006) Seismo-Ionospheric Depression of the ULF Geomagnetic Fluctuations at Kamchatka and Japan. Physics and Chemistry of the Earth, 31, 313-318.
https://doi.org/10.1016/j.pce.2006.02.043
[8]  Yang, S.S., Asano, T. and Hayakawa, M. (2019) Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. Journal of Geophysical Research: Space Physics, 124, 1410-1425. https://doi.org/10.1029/2018JA026002
[9]  Hayakawa, M., Kasahara, Y., Nakamura, T., Hobara, Y., Rozhnoi, A., Solovieva, M., Molchanov, O.A. and Korepanov, V. (2011) Atmospheric Gravity Waves as a Possible Candidate for Seismo-Ionospheric Perturbations. Journal of Atmospheric Electricity, 31, 129-140. https://doi.org/10.1541/jae.31.129
[10]  Sorokin, V.M., Chmyrev, V.M. and Hayakawa, M. (2015) Electrodynamic Coupling of Lithosphere-Atmosphere-Ionosphere of the Earth. Nova Science Publishers, New York, 355 p.
[11]  King, C. (1986) Gas Geochemistry Applied to Earthquake Prediction: An Overview. Journal of Geophysical Research: Solid Earth, 91, 12269-12281.
https://doi.org/10.1029/JB091iB12p12269
[12]  McCartney, B.S. and Bary, B.M. (1965) Echo-Sounding on Probable Gas Bubbles from Bottom of Saanish Inlet, British Columbia. Deep Sea Research, 12, 285-293.
https://doi.org/10.1016/0011-7471(65)90002-1
[13]  Lyon, G.L. (1972) Geothermal Gases. In: Kaplan, I.R., Ed., Natural Gases in Marine Sediment, Plenum Press, New York and London, 141-150.
https://doi.org/10.1007/978-1-4684-2757-8_9
[14]  Marty, B., Meynier, V., Nicolini, E., Griesshaber, E. and Toutain, J.P. (1993) Geochemistry of Gas Emanations: A Case Study of the Réunion Hot Spot, Indian Ocean. Applied Geochemistry, 8, 141-152.
https://doi.org/10.1016/0883-2927(93)90030-K
[15]  Nikolaeva, N.A., Derkachev, A.N. and Obzhirov, A.I. (2009) Characteristic Features of the Occurrence of Gas-Fluid Emanations on the Northeastern Slope of Sakhalin Island, Sea of Okhotsk. Russian Journal of Pacific Geology, 3, 234-248.
https://doi.org/10.1134/S181971400903004X
[16]  Gak, E.Z. (2013) Magnetic Fields and Aqueous Electrolytes in Nature, Scientific Research and Technologies. Elmor, Saint-Petersburg, 343-364.
[17]  Harper, W.R. (1957) The Generation of Static Charge. Philosophical Magazine. Supplement Advances in Physics, 6, 365-417.
https://doi.org/10.1080/00018735700101396
[18]  Blanchard, D.C. (1963) The Electrification of the Atmosphere by Particles from Babbles in the Sea. Progress in Oceanography, 1, 73-197.
https://doi.org/10.1016/0079-6611(63)90004-1
[19]  Zavarsky, A., Booge, D., Fiehn, A., Kruger, K., Atlas, E. and Marandino, C. (2018) The Influence of Air-Sea Fluxes on Atmospheric Aerosols during the Summer Monsoon over the Tropical Indian Ocean. Geophysical Research Letters, 45, 418-426. https://doi.org/10.1002/2017GL076410
[20]  Revell, L.E., Kremser, S., Hartery, S., Harvey, M., Mulcahy, J.P., Williams, J., Morgenstern, O., McDonald, A.J., Varma, V., Bird, L. and Schuddeboom, A. (2019) The Sensitivity of Southern Ocean Aerosols and Cloud Microphysics to Sea Spray and Sulfate Aerosol Production in the HadGEM3-GA7.1 Chemistry-Climate Model. Atmospheric Chemistry and Physics, 19, 15447-15466.
https://doi.org/10.5194/acp-19-15447-2019
[21]  Qin, K., Wu, L.X., Zheng, S., Bai, Y. and Lv, X. (2004) Is There an Abnormal Enhancement of Atmospheric Aerosol before the 2008, Wenchuan Earthquake? Advances in Space Research, 54, 1029-1034. https://doi.org/10.1016/j.asr.2014.04.025
[22]  Okada, Y., Mukai, S. and Singh, R.P. (2004) Changes in Atmospheric Aerosol Parameters after Gujarat Earthquake of January 26, 2001. Advances in Space Research, 33, 254-258. https://doi.org/10.1016/S0273-1177(03)00474-5
[23]  Akhoondzadeh, M. (2015) Ant Colony Optimization Detects Anomalous Aerosol Variations Associated with the Chile Earthquake of 27 February 2010. Advances in Space Research, 55, 1754-1763. https://doi.org/10.1016/j.asr.2015.01.016
[24]  Akhoondzadeh, M. and Chehrebargh, F.J. (2016) Feasibility of Anomaly Occurrence in Aerosols Time Series Obtained from MODIS Satellite Images during Hazardous Earthquakes. Advances in Space Research, 58, 890-896.
https://doi.org/10.1016/j.asr.2016.05.046
[25]  Alekseev, V.A. and Alekseeva, N.G. (1992) Investigation of Metal Transfer in the Biosphere during Gaseous Emission in Zones of Tectonic Activity Using Methods of Nuclear Physics. Nuclear Geophysics, 6, 99-105.
[26]  Voitov, G.I. and Dobrovolsky, I.P. (1994) Chemical and Isotope—Carbonic Instability of the Soil Gases in the Seismic Regions. Izvestiya AN SSSR, Fizika Zemli, 3, 20-27.
[27]  Heincke, J., Koch, U. and Martinelli, G. (1995) CO2 and Radon Measurements in the Vogtland Area (Germany)—A Contribution to Earthquake Prediction Research. Geophysical Research Letters, 22, 774-779. https://doi.org/10.1029/94GL03074
[28]  Pulinets, S.A., Alekseev, V.A., Legenka, A.D. and Khegai, V.V. (1997) Radon and Metallic Aerosols Emanation before Strong Earthquakes and Their Role in Atmosphere and Ionosphere Modification. Advances in Space Research, 20, 2173-2176.
https://doi.org/10.1016/S0273-1177(97)00666-2
[29]  Biagi, P.F. (2009) Pre and Post Seismic Disturbances Revealed on the Geochemical Data Collected at Kamchatka (Russia) during the Last 30 Years. In: Hayakawa, M., Ed., Electromagnetic Phenomena Associated with Earthquakes, Transworld Research Network, Trivandrum, 97-117.
[30]  Boyarchuk, K.A. (1997) Kinetics of Elementary Ions in the Lower Atmosphere Acted upon by Ionizing Radiation. Izvestia. Atmospheric and Oceanic Physics, 33, 214-217.
[31]  Chmyrev, V.M., Isaev, N.V., Bilichenko, S.V. and Stanev, G.A. (1989) Observation by Space-Borne Detectors of Electric Fields and Hydromagnetic Waves in the Ionosphere over on Earthquake Center. Physics of the Earth and Planetary Interiors, 57, 110-114. https://doi.org/10.1016/0031-9201(89)90220-3
[32]  Gousheva, M., Danov, D., Hristov, P. and Matova, M. (2008) Quasi-Static Electric Fields Phenomena in the Ionosphere Associated with Pre- and Post-Earthquake Effects. Natural Hazards Earth System Sciences, 8, 101-107.
https://doi.org/10.5194/nhess-8-101-2008
[33]  Gousheva, M., Danov, D., Hristov, P. and Matova, M. (2009) Ionospheric Quasi-Static Electric Field Anomalies during Seismic Activity August-September 1981. Natural Hazards Earth System Sciences, 9, 3-15.
https://doi.org/10.5194/nhess-9-3-2009
[34]  Zhang, X., Shen, X., Zhao, S., Yao, L., Ouyang, X. and Qian, J. (2014) The Characteristics of Quasi-Static Electric Field Perturbations Observed by DEMETER Satellite before Large Earthquakes. Journal of Asian Earth Sciences, 79, 42-52.
https://doi.org/10.1016/j.jseaes.2013.08.026
[35]  Kondo, G. (1968) The Variation of the Atmospheric Electric Field at the Time of Earthquake. Memoirs of the Kakioka Magnetic Observatory, 13, 11-23.
[36]  Vershinin, E.F., Buzevich, A.V., Yumoto, K., Saita, K. and Tanaka, Y. (1999) Correlations of Seismic Activity with Electromagnetic Emissions and Variations in Kamchatka Region. In: Hayakawa, M., Ed., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra Scientific Publishing Company (TERRAPUB), Tokyo, 513-517.
[37]  Hao, J., Tang, T. and Li, D. (2000) Progress in the Research of Atmospheric Electric Field Anomaly as an Index for Short-Impending Prediction of Earthquakes. Journal of Earthquake Prediction Research, 8, 241-255.
[38]  Rulenko, O.P. (2000) Operative Precursors of Earthquakes in the Near-Ground Atmosphere Electricity. Volcanology and Seismology, 4, 57-68.
[39]  Kelley, M.S., Siefring, C.L., Pfaff, R.F., Kintner, P.M., Larsen, M., Green, M., Holzworth, R.H., Hale, L.C., Mitchell, J.D. and Vine, D.I. (1985) Electrical Measurements in the Atmosphere and the Ionosphere over an Active Thunderstorm, 1. Campaign Overview and Initial Ionospheric Results. Journal of Geophysical Research, 90, 9815-9823. https://doi.org/10.1029/JA090iA10p09815
[40]  Holzworth, R.H., Kelley, M.S., Siefring, C.L., Hale, L.C. and Mitchell, J.D. (1985) Electrical Measurements in the Atmosphere and the Ionosphere over an Active Thunderstorm, 2. Direct Current Electric Fields and Conductivity. Journal of Geophysical Research, 90, 9824-9831. https://doi.org/10.1029/JA090iA10p09824
[41]  Isaev, N.V., Sorokin, V.M., Chmyrev, V.M., Serebryakova, O.N. and Ovcharenko, O.Ya. (2002) Electric Field Enhancement in the Ionosphere above Tropical Storm Region. In: Hayakawa, M. and Molchanov, O.A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 313-315.
[42]  Sorokin, V.M., Isaev, N.V., Yaschenko, A.K., Chmyrev, V.M. and Hayakawa, M. (2005) Strong DC Electric Field Formation in the Low Latitude Ionosphere over Typhoons. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 1269-1279.
https://doi.org/10.1016/j.jastp.2005.06.014
[43]  Rakov, V.A. and Uman, M.A. (2002) Lightning: Physics and Effects. Cambridge Univ. Press, Cambridge. https://doi.org/10.1017/CBO9781107340886
[44]  Sorokin, V.M. and Hayakawa, M. (2013) Generation of Seismic-Related DC Electric Fields and Lithosphere-Atmosphere-Ionosphere Coupling. Modern Applied Science, 7, 1-25. https://doi.org/10.5539/mas.v7n6p1
[45]  Sorokin, V.M. and Hayakawa, M. (2014) Plasma and Electromagnetic Effects Caused by the Seismic-Related Disturbances of Electric Current in the Global Circuit. Modern Applied Science, 8, 61-83. https://doi.org/10.5539/mas.v8n4p61
[46]  Liperovsky, V.A., Meister, C.-V., Liperovskaya, E.V. and Bogdanov, V.V. (2008) On the Generation of Electric Field and Infrared Radiation in Aerosol Clouds Due to Radon Emanation in the Atmosphere before Earthquakes. Natural Hazards Earth System Sciences, 8, 1199-1205. https://doi.org/10.5194/nhess-8-1199-2008
[47]  Freund, F. (2010) Toward a Unified Solid-State Theory for Pre-Earthquake Signals. Acta Geophysica, 58, 719-766. https://doi.org/10.2478/s11600-009-0066-x
[48]  Sorokin, V.M. and Yaschenko, A.K. (2000) Electric Field Disturbance in the Earth-Ionosphere Layer. Advances in Space Research, 26, 1219-1223.
https://doi.org/10.1016/S0273-1177(99)01221-1
[49]  Omori, Y., Nagahama, H., Kawada, Y., Yasuoka, Y., Ishikawa, T., Tokonami, S. and Shinogi, M. (2008) Preseismic Alteration of Atmospheric Electrical Conditions Due to Anomalous Radon Emanation. Physics and Chemistry of the Earth, 33, 276-284.
[50]  Harrison, R.G., Aplin, K.L. and Rycroft, M.J. (2010) Atmospheric Electricity Coupling between Earthquake Regions and the Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 376-381.
https://doi.org/10.1016/j.jastp.2009.12.004
[51]  Kim, V.P. and Hegai, V.V. (1999) A Possible Presage of Strong Earthquakes in the Night-Time Mid-Latitude F2 Region Ionosphere. In: Hayakawa, M., Ed., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra Science Publishing Co., Tokyo, 619-627.
[52]  Denisenko, V.V., Boudjada, M.Y., Horn, M., Pomozov, E.V., Biernat, H.K., Schwingenschuh, K., Lammer, H., Prattes, G. and Cristea, E. (2008) Ionospheric Conductivity Effects on Electrostatic Field Penetration into the Ionosphere. Natural Hazards Earth System Sciences, 8, 1009-1017.
https://doi.org/10.5194/nhess-8-1009-2008
[53]  Park, C.G. and Dejnakarintra, M. (1973) Penetration of Thundercloud Electric Fields into the Ionosphere and Magnetosphere. 1. Middle and Auroral Latitudes. Journal of Geophysical Research, 84, 960-964.
https://doi.org/10.1029/JA084iA03p00960
[54]  Sorokin, V.M., Chmyrev, V.M. and Yaschenko, A.K. (2001) Electrodynamic Model of the Lower Atmosphere and the Ionosphere Coupling. Journal of Atmospheric and Solar-Terrestrial Physics, 63, 1681-1691.
https://doi.org/10.1016/S1364-6826(01)00047-5
[55]  Liu, J.Y. (2009) Earthquake Precursors Observed in the Ionospheric F-Region. In: Hayakawa, M., Ed., Electromagnetic Phenomena Associated with Earthquakes, Transworld Research Network, Trivandrum, 187-204.
[56]  Zakharenkova, I.E., Shagimuratov, I.I., Tepenitzina, N.Yu. and Krankowski, A. (2008) Anomalous Modification of the Ionospheric Total Electron Content Prior to the 26 September 2005 Peru Earthquake. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1919-1928. https://doi.org/10.1016/j.jastp.2008.06.003
[57]  Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E. and Pulinets, S.A. (2012) Variations of Equatorial Electrojet as Possible Seismo-Ionospheric Precursor at the Occurrence of TEC Anomalies before Strong Earthquake. Advances in Space Research, 49, 509-517. https://doi.org/10.1016/j.asr.2011.10.017
[58]  Ruzhin, Yu.Ya., Sorokin, V.M. and Yaschenko, A.K. (2014) Physical Mechanism of Ionospheric Total Electron Content Perturbations over a Seism Active Region. Geomagnetism and Aeronomy, 54, 337-346.
https://doi.org/10.1134/S001679321403013X
[59]  Kuo, C.L., Huba, J.D., Joyce, G. and Lee, L.C. (2011) Ionosphere Plasma Bubbles and Density Variations Induced by Pre-Earthquake Rock Currents and Associated Surface Charges. Journal of Geophysical Research, 116, A10317.
https://doi.org/10.1029/2011JA016628
[60]  Biagi, P.F., Piccolo, R., Castellana, L., Maggipinto, T., Ermini, A., Martellucci, S., Bellecci, C., Perna, G., Capozzi, V., Molchanov, O.A., Hayakawa, M. and Ohta, K. (2004) VLF-LF Radio Signals Collected at Bari (South Italy): A Preliminary Analysis on Signal Anomalies Associated with Earthquakes. Natural Hazards and Earth System Sciences, 4, 685-689.
https://doi.org/10.5194/nhess-4-685-2004
[61]  Hayakawa, M. (2007) VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes. Sensors, 7, 1141-1158. https://doi.org/10.3390/s7071141
[62]  Sorokin, V.M. and Pokhotelov, O.A. (2010) The Effect of Wind on the Gravity Wave Propagation in the Earth’s Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 213-218. https://doi.org/10.1016/j.jastp.2009.11.012
[63]  Martynenko, S.I., Fuks, I.M. and Shubova, R.S. (1996) Ionospheric Electric—Field Influence on the Parameters of VLF Signals Connected with Nuclear Accidents and Earthquakes. Journal of Atmospheric Electricity, 15, 259-269.
[64]  Ondoh, T. (2003) Anomalous Sporadic-E Layers Observed before M7.2 Hyogo-Ken Nanbu Earthquake; Terrestrial Gas Emanation Model. Advances in Polar Upper Atmosphere Research, 17, 96-108.
[65]  Yokoyama, T., Yamamoto, M., Pfaff, R.F., Fukao, S. and Iwagami, N. (2002) SEEK-2 Campaign Measurement of the Electric Field in the E-Region and Its Association with the QP Echoes. Abstracts for 112th SGEPSS Fall Meeting, Tokyo, 12-13.
[66]  Sorokin, V.M., Yaschenko, A.K. and Hayakawa, M. (2006) Formation Mechanism of the Lower Ionosphere Disturbances by the Atmosphere Electric Current over a Seismic Region. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1260-1268.
https://doi.org/10.1016/j.jastp.2006.03.005
[67]  Hayakawa, M., Ohta, K., Nickolaenko, A.P. and Ando, Y. (2005) Anomalous Effect in Schumann Resonance Phenomena Observed in Japan, Possibly Associated with the Chi-Chi Earthquake in Taiwan. Annales Geophysicae, 23, 1335-1346.
https://doi.org/10.5194/angeo-23-1335-2005
[68]  Laptukhov, A.I., Sorokin, V.M. and Yaschenko, A.K. (2009) Disturbance of the Ionosphere D Region by Electric Current in the Atmosphere-Ionosphere Electric Circuit. Geomagnetism and Aeronomy, 49, 805-811.
https://doi.org/10.1134/S0016793209060103
[69]  Chmyrev, V.M., Isaev, N.V., Serebryakova, O.N., Sorokin, V.M. and Sobolev, Ya.P. (1997) Small-Scale Plasma Inhomogeneities and Correlated ELF Emissions in the Ionosphere over an Earthquake Region. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 967-973. https://doi.org/10.1016/S1364-6826(96)00110-1
[70]  Serebryakova, O.N., Bilichenko, S.V., Chmyrev, V.M., Parrot, M., Rauch, J.L., Lefeuvre, F. and Pokhotelov, O.A. (1992) Electromagnetic ELF Radiation from Earthquake Regions as Observed by Low-Altitude Satellites. Geophysical Research Letters, 19, 91-94.
https://doi.org/10.1029/91GL02775
[71]  Akhoondzadeh, M. (2013) Novelty Detection in Time Series of ULF Magnetic and Electric Components Obtained from DEMETER Satellite Experiments above Samoa (29 September 2009) Earthquake Region. Natural Hazards and Earth System Sciences, 13, 15-25. https://doi.org/10.5194/nhess-13-15-2013
[72]  Zhang, X., Zeren, Z., Parrot, M., Battiston, R., Qian, J. and Shen, X. (2011) ULF/ELF Ionospheric Electric Field and Plasma Perturbations Related to Chile Earthquake. Advances in Space Research, 47, 991-1000. https://doi.org/10.1016/j.asr.2010.11.001
[73]  Sorokin, V.M., Chmyrev, V.M. and Isaev, N.V. (1998) A Generation Model of Mall-Scale Geomagnetic Field-Aligned Plasma Inhomogeneities in the Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 1331-342.
https://doi.org/10.1016/S1364-6826(98)00078-9
[74]  Chmyrev, V.M. and Sorokin, V.M. (2010) Generation of Internal Gravity Vortices in the High-Latitude Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics 72, 992-996. https://doi.org/10.1016/j.jastp.2010.05.013
[75]  Chmyrev, V.M., Sorokin, V.M. and Shklyar, D.R. (2008) VLF Transmitter Signals as a Possible Tool for Detection of Seismic Effects on the Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 2053-2060.
https://doi.org/10.1016/j.jastp.2008.09.005
[76]  Chmyrev, V.M., Bilichenko, S.V., Pokhotelov, O.A., Marchenko, V.A., Lazarev, V.I., Streltsov, A.V. and Stenflo, L. (1988) Alfven Vortices and Related Phenomena in the Ionosphere and the Magnetosphere. Physica Scripta, 38, 841-854.
https://doi.org/10.1088/0031-8949/38/6/016
[77]  Molchanov, O.A., Schekotov, A.Yu., Fedorov, E., Belyaev, G.G., Solovieva, M. and Hayakawa, M. (2003) Preseismic ULF Effect and Possible Interpretation. Annals of Geophysics, 47, 119-131.
[78]  Molchanov, O.A., Hayakawa, M. and Rafalsky, V.A. (1995) Penetration Characteristics of Electromagnetic Emissions from an Underground Seismic Source into the Atmosphere, Ionosphere and Magnetosphere. Journal of Geophysical Research, 100, 1691-1712. https://doi.org/10.1029/94JA02524
[79]  Surkov, V. and Pilipenko, V. (1999) The Physics of Pre-Seismic Electromagnetic ULF Signals. In: Hayakawa, M., Ed., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, 357-370.
[80]  Sorokin, V.M., Chmyrev, V.M. and Yaschenko, A.K. (2003) Ionospheric Generation Mechanism of Geomagnetic Pulsations Observed on the Earth’s Surface before Earthquake. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 21-29.
https://doi.org/10.1016/S1364-6826(02)00082-2
[81]  Rauscher, E.A. and Van Bise, W.L. (1999) The Relationship of Extremely Low Frequency Electromagnetic and Magnetic Fields Associated with Seismic and Volcanic Natural Activity and Artificial Ionospheric Disturbances. In: Hayakawa, M., Ed., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, 459-487.
[82]  Sorokin, V.M. and Hayakawa, M. (2008) On the Generation of Narrow-Banded ULF/ELF Pulsations in the Lower Ionospheric Conducting Layer. Journal of Geophysical Research, 113, a06306. https://doi.org/10.1029/2008JA013094
[83]  Borisov, N., Chmyrev, V. and Rybachek, S. (2001) A New Ionospheric Mechanism of Electromagnetic ELF Precursors to Earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 63, 3-10. https://doi.org/10.1016/S1364-6826(00)00153-X
[84]  Blecki, J., Parrot, M. and Wronovski, R. (2010) Studies of Electromagnetic Field Variations in ELF Range Registered by DEMETER over the Sichuan Region Prior to the 12 May 2008 Earthquake. International Journal of Remote Sensing, 31, 3615-3629.
https://doi.org/10.1080/01431161003727754
[85]  Blecki, J., Parrot, M. and Wronovski, R. (2011) Plasma Turbulence in the Ionosphere Prior to Earthquakes, Some Remarks on the DEMETER Registrations. Journal of Asian Earth Sciences, 41, 450-458.
https://doi.org/10.1016/j.jseaes.2010.05.016
[86]  Vallianatos, F. and Nomicos, K. (1998) Sesmogenic Radio Emissions as Earthquake Precursors in Greece. Physics and Chemistry of the Earth, 23, 953-957.
https://doi.org/10.1016/S0079-1946(98)00126-8
[87]  Ruzhin, Yu. and Nomicos, C. (2007) Radio VHF Precursors of Earthquakes. Natural Hazards, 40, 573-583. https://doi.org/10.1007/s11069-006-9021-1
[88]  Fukumoto, Y., Hayakawa, M. and Yasuda, H. (2001) Investigation of Over-Horizon VHF Radio Signals Associated with Earthquakes. Natural Hazards and Earth System Sciences, 1, 107-112. https://doi.org/10.5194/nhess-1-107-2001
[89]  Yasuda, Y., Ida, Y., Goto, T. and Hayakawa, M. (2009) Interferometric Direction Finding of Over-Horizon VHF Transmitter Signals and Natural VHF Radio Emissions Possibly Associated with Earthquakes. Radio Science, 44, RS2009.
https://doi.org/10.1029/2008RS003884
[90]  Moriya, T., Mogi, T. and Takada, M. (2010) Anomalous Pre-Seismic Transmission of VHF-Band Radio Waves Resulting from Large Earthquakes, and Its Statistical Relationship to Magnitude of Impending Earthquakes. Geophysical Journal International, 180, 858-870.
https://doi.org/10.1111/j.1365-246X.2009.04461.x
[91]  Hayakawa, M., Surkov, V.V., Fukumoto, Y. and Yonaiguchi, N. (2007) Characteristics of VHF Over-Horizon Signals Possibly Related to Impending Earthquakes and a Mechanism of Seismo-Atmospheric Perturbations. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1057-1062. https://doi.org/10.1016/j.jastp.2007.03.011
[92]  Sorokin, V.M., Ruzhin, Yu.Ya., Yaschenko, A.K. and Hayakawa, M. (2011) Generation of VHF Radio Emissions by Electric Discharges in the Lower Atmosphere over a Seismic Region. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 664-670.
https://doi.org/10.1016/j.jastp.2011.01.016
[93]  Sorokin, V.M., Yaschenko, A.K. and Hayakawa, M. (2014) VHF Transmitter Signal Scattering on Seismic Related Electric Discharges in the Troposphere. Journal of Atmospheric and Solar-Terrestrial Physics, 109, 15-21.
https://doi.org/10.1016/j.jastp.2013.12.020
[94]  Sorokin, V.M., Ruzhin, Yu.Ya., Yaschenko, A.K. and Hayakawa, M. (2012) Seismic-Related Electric Discharges in the Lower Atmosphere. In: Hayakawa, M., Ed., The Frontier of Earthquake Prediction Studies, Nihon-Senmontosho-Shuppan, Tokyo, 592-611.
[95]  Voinov, V.V., Gufeld, I.L. and Kruglikov, V.V. (1992) Effects in the Ionosphere and Atmosphere before the Spitack Earthquake. News of USSR Academy, Fizika Zemli, No. 3, 96-101.
[96]  Zhao, Y. and Qian, F. (1997) Earthquake Lights: A Very Convincing Evidence for Energy Transfer from Earth to Air. In: International Workshop on Seismo-Electromagnetics (Abstracts), NASDA, Tokyo, 242.
[97]  Williams, E.R. (1989) The Electrification of Thunderstorms. Journal of Geophysical Research, 93, 992-993.
[98]  Tertyshinikov, A.V. (1996) The Variations of Ozone Content in the Atmosphere above Strong Earthquake Epicentre. Physics of Solid Earth, 31, 789-794.
[99]  Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M. and Taylor, P. (2007) Outgoing Long Wave Radiation Variability from IR Satellite Data Prior to Major Earthquakes. Tectonophysics, 431, 211-220.
https://doi.org/10.1016/j.tecto.2006.05.042
[100]  Kratz, D.P. and Cess, R.D. (1988) Infrared Radiation Models for Atmospheric Ozone. Journal of Geophysical Research, 93, 7047-7054.
https://doi.org/10.1029/JD093iD06p07047
[101]  Tronin, A.A., Hayakawa, M. and Molchanov, O.A. (2002) Thermal IR Satellite Data Application for Earthquake Research in Japan and China. Journal of Geodynamics, 33, 477-487. https://doi.org/10.1016/S0264-3707(02)00013-3
[102]  Sorokin, V.M. and Chmyrev, V.M. (2010) Atmosphere-Ionosphere Electrodynamic Coupling. In: Bychkov, V.L., et al., Eds., The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring, Springer, Berlin, 97-146.
https://doi.org/10.1007/978-90-481-3212-6_3

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133