全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental and Numerical Study of Energy Losses in a Barbecue Oven in Burkina Faso

DOI: 10.4236/ojee.2020.91003, PP. 31-52

Keywords: Grill, Oven, Optimization, Energy Losses, Nodal Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work concerns an experimental and numerical study of energy losses in a typical oven usually used in the agro-food craft sector in Burkina Faso. The experimental results were obtained by infrared thermography of the oven and by monitoring the evolution of the wall temperatures using thermocouples connected to a data acquisition system. These results indicate that the energy losses are mainly through the walls of the oven. The numerical study based on the energy balance and corroborated by the experimental study made it possible to quantify these losses of energy which represents almost half of the fuel used. These results will allow us to work on a new, more efficient oven model for the grilling sector in Burkina Faso.

References

[1]  Suresh, R., Singh, V., Malik, J., Datta, A., et al. (2016) Evaluation of the Performance of Improved Biomass Cooking Stoves with Different Solid Biomass Fuel Types. Biomass and Bioenergy, 95, 27-34.
https://doi.org/10.1016/j.biombioe.2016.08.002
[2]  Hummel, D. (2015) Climate Change, Land Degradation and Migration in Mali and Senegal: Some Policy Implications. Migration and Development, 5, 211-233.
https://doi.org/10.1080/21632324.2015.1022972
[3]  Awojobi, O.N. and Tetteh, J. (2017) The Impacts of Climate Change in Africa: A Review of the Scientific Literature. Journal of International Academic Research for Multidisciplinary, 5, 39-52.
[4]  Chersich, M.F., Wright, C.Y., Venter, F., Rees, H., Scorgie, F. and Erasmus, B. (2018) Impacts of Climate Change on Health and Wellbeing in South Africa. International Journal of Environmental Research and Public Health, 15, 1884.
https://doi.org/10.3390/ijerph15091884
[5]  Pyhala, A., Fernandez-Llamazares, A., Lehvavirta, H., Byg, A., Ruiz-Mallén, I., Salpeteur, M. and Thornton, T.F. (2016) Global Environmental Change: Local Perceptions, Understandings and Explanations. Ecology and Society, 21, 3-25.
https://doi.org/10.5751/ES-08482-210325
[6]  Hallegatte, S., Fay, M. and Barbier, E.B. (2018) Poverty and Climate Change. Introduction, Environment and Development Economics, 23, 217-233.
https://doi.org/10.1017/S1355770X18000141
[7]  Ministère de l’Environnement et du Développement Durable (2013) Quelles stratégie pour le renforcement de la résilience des populations face au changement climatique en vue d’assurer une sécurité alimentaire durable. Ouagadougou.
[8]  Kshirsagar, M.P. and Kalamkar, V.R. (2014) A Comprehensive Review on Biomass Cookstoves and a Systematic Approach for Modern Cookstove Design. Renewable and Sustainable Energy Reviews, 30, 580-603.
https://doi.org/10.1016/j.rser.2013.10.039
[9]  IRSAT (2013) Catalogue des technologies et innovations du Burkina Faso, 2ère édition.
[10]  IRSAT (2014) Catalogue des technologies et innovations du Burkina Faso, 1ème édition.
[11]  Birzer, C., Medwell, P., MacFarlane, G., Read, M., Wilkey, J., Higgins, M. and West, T. (2014) A Biochar-Producing, Dung-Burning Cookstove for Humanitarian Purposes. Procedia Engineering, 78, 243-249.
https://doi.org/10.1016/j.proeng.2014.07.063
[12]  Benka-Coker, M.L., Tadele, W., Milano, A., Getaneh, D. and Stokes, H. (2018) A Case Study of the Ethanol Clean Cook Stove Intervention and Potential Scale-Up in Ethiopia. Energy for Sustainable Development, 46, 53-64.
https://doi.org/10.1016/j.esd.2018.06.009
[13]  Vitali, F., Parmigiani, S., Vaccari, M. and Collivignarelli, C. (2013) Agricultural Waste as Household Fuel: Techno-Economic Assessment of a New Rice-Husk Cookstove for Developing Countries. Waste Management, 33, 2762-2770.
https://doi.org/10.1016/j.wasman.2013.08.026
[14]  Kimemia, D. and Annegarn, H. (2011) An Urban Biomass Energy Economy in Johannesburg, South Africa. Energy for Sustainable Development, 15, 382-387.
https://doi.org/10.1016/j.esd.2011.10.002
[15]  Sedighi, M. and Salarian, H. (2017) A Comprehensive Review of Technical Aspects of Biomass Cookstoves. Renewable and Sustainable Energy Reviews, 70, 656-665.
https://doi.org/10.1016/j.rser.2016.11.175
[16]  Giwa, A., Alabi, A., Yusuf, A. and Olukan, T. (2017) A Comprehensive Review on Biomass and Solar Energy for Sustainable Energy Generation in Nigeria. Renewable and Sustainable Energy Reviews, 69, 620-641.
https://doi.org/10.1016/j.rser.2016.11.160
[17]  Global Alliance for Clean Cookstoves (2017) Handbook for Boimass Cookstove Research, Design and Development: A Practical Guide to Implementing Recent Advances. Massachusetts Institute of Technology D-Lab.
[18]  Brady, M.P., Banta, K., Mizia, J., Lorenz, N., Leonard, D.N., Yamamoto, Y., Defoort, M. and Keiser, J.R. (2017) Alloy Corrosion Considerations in Low-Cost, Clean Biomass Cookstoves for the Developing World. Energy for Sustainable Development, 37, 20-32.
https://doi.org/10.1016/j.esd.2016.12.002
[19]  Shen, G. (2016) Changes from Traditional Solid Fuels to Clean Household Energies: Opportunities in Emission Reduction of Primary PM 2.5 from Residential Cookstoves in China. Biomass and Bioenergy, 86, 28-35.
https://doi.org/10.1016/j.biombioe.2016.01.004
[20]  Beohar, H., Gupta, B., Sethi, D.V.K., Pandey, D.M. and Parmar, H. (2012) Effect of Air Velocity, Fuel Rate and Monster Content on the Performance Updraft Biomass Gasifier Using Fluent Tool. International Journal of Modern Engineering Research, 2, 3622-3627.
[21]  Georges, O.G., Mamadou, O. and Tenga, R. (2004) Atelier Régional de Capitalisation de L’Expérience Sahélienne en Matière de Carbonisation Améliorée et D’agglo-briquetage.
[22]  Arora, P., Das, P., Jain, S. and Kishore, V.V.N. (2014) A Laboratory Based Comparative Study of Indian Biomass Cookstove Testing Protocol and Water Boiling Test. Energy for Sustainable Development, 21, 81-88.
https://doi.org/10.1016/j.esd.2014.06.001
[23]  Arora, P. and Jain, S. (2016) Review of Chronological Development in Cookstove Assessment Methods: Challenges and Way Forward. Renewable and Sustainable Energy Reviews, 55, 203-220.
https://doi.org/10.1016/j.rser.2015.10.142
[24]  Sutar, K.B., Kohlin, S., Ravi, M.R. and Ray, A. (2015) Biomass Cookstoves: A Review of Technical Aspects. Renewable and Sustainable Energy Reviews, 41, 1128-1166.
https://doi.org/10.1016/j.rser.2014.09.003
[25]  Montrol, T., Jay, J., Xin, S., Knikker, R. and Decrescenzo, M.-L. (2012) Construction d’un modèle thermique nodal pour la phase de prédimensionnement d’un équipement roue et frein aéronautique: Méthodologie et simplifications, Casablanca: 2ème Congrès del’Association Marocaine de Thermique Efficacité énergétique dans l’industrie.
[26]  Compaore, A. (2018) Etude des performances thermiques d’un habitat type du Burkina Faso. Application: Contribution à la mise en place d’une reglementation thermique. Université OuagaI Pr Joseph KI ZERBO, Ouagadougou.
[27]  McCarty, N.A. and Bryden, K.M. (2016) A Generalized Heat-Transfer Model for Shielded Fire. Energy for Sustainable Development, 33, 96-107.
https://doi.org/10.1016/j.esd.2016.03.003
[28]  Eyglunent, B. (2003) Manuel de thermique-Théorie et pratique, Hermès-Lavoisier.
[29]  Kshirsagar, M.P. and Kalamkar, V.R. (2015) A Mathematical Tool for Predicting Thermal Performance of Natural Draft Biomass Cookstoves and Identification of a New Operational Parameter. Energy, 93, 188-201.
https://doi.org/10.1016/j.energy.2015.09.015
[30]  Ivanova, S.M. (2013) Estimation of Background Diffuse Irradiance on Orthogonal Surfaces under Partially Obstructed Anisotropic Sky Part I—Vertical Surfaces. Solar Energy, 95, 376-391.
https://doi.org/10.1016/j.solener.2013.01.021
[31]  Ramírez-Faz, J., Casares, F.J. and Lopez-Luque, R. (2015) Development of Synthetic Hemispheric Projections Suitable for Assessing the Sky View Factor on Vertical Planes. Renewable Energy, 74, 279-286.
https://doi.org/10.1016/j.renene.2014.08.025
[32]  Boubghal, S.O.A. (2008) Etude paramétrique d’un capteur solaire plan à air destiné au séchage, (Partie: 2). Revue des Energies Renouvelables SMSTS’08 Alger. 255-26.
[33]  Khummongkol, P., Wibulswas, P. and Bhaitacharya, S.C. (1988) Modeling of a Charcoal Cook Stove. Energy, 13, 813-821.
https://doi.org/10.1016/0360-5442(88)90086-2

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413