全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低风速条件下风力机叶片翼型气动性能对比及分析
Aerodynamic Performances of the Wind Turbine Airfoils in the Condition of Low Wind Speed

DOI: 10.12677/IJFD.2020.81001, PP. 1-8

Keywords: 低风速,叶片翼型,流动分离,气动特性,升阻比
Low Wind Speed
, Blade Airfoil, Flow Separation, Aerodynamic Characteristics, Lift-Drag Ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要考察NACA4412,S8037,S1091三种风力机叶片翼型在低风速条件下的气动性能。首先,针对这三种翼型构建了CFD流体动力学模型并进行数值验证;其次,通过数值仿真研究对比了三种翼型在低风速、不同攻角条件下的速度和流线特性云图,并分析了各自在大攻角下的流动分离特征;最后,研究了三种翼形在不同工况下的升阻特性,分析了风速和攻角对于气动性能的影响规律。本文通过三种翼型在低风速条件下的气动性能的对比研究,为低风速风力机设计和优化提供了参考。
In this paper, the aerodynamic performances of the NACA4412, S8037, S1091 airfoils are studied respectively. Firstly, CFD fluid dynamics models are constructed for these three airfoils. Secondly, velocity and streamline characteristics are studied and compared under low wind speed and different angles of attack through numerical simulation. The characteristics of flow separation are analyzed respectively at a high angle of attack. Finally, the lift-drag characteristics are researched in different conditions. Furthermore, the influence rule on aerodynamic characteristics of airfoils for different wind speeds and angles of attack is analyzed. This article provides a reference for the design and optimization of low-speed wind turbines by studying the aerodynamic performance of three kinds of airfoils.

References

[1]  Ruffato-Ferreira, V., Barreto, R.D.C., Júnior, A.O., et al. (2017) A Foundation for the Strategic Long-Term Planning of the Renewable Energy Sector in Brazil: Hydroelectricity and Wind Energy in the Face of Climate Change Scenarios. Renewable & Sustainable Energy Reviews, 72, 1124-1137.
https://doi.org/10.1016/j.rser.2016.10.020
[2]  Tuka, M.B., Leidhold, R. and Mamo, M. (2017) Modeling and Control of a Doubly Fed Induction Generator Using a Back-to-Back Converters in Grid Tied Wind Power System. 2017 IEEE PES/IAS Power Africa, Accra, Ghana, 27-30 June 2017, 75-80.
[3]  周祎, 顾阿伦. 中国风力发电成本下降和减排碳价分析[J]. 可再生能源, 2019, 37(7): 1084-1090.
[4]  Wizelius, T. (2015) Developing Wind Power Projects: Theory and Practice. Routledge, London.
https://doi.org/10.4324/9781315781396
[5]  王长路, 王伟功, 张立勇, 乔雪涛. 中国风电产业发展分析[J]. 重庆大学学报, 2015, 38(1): 148-154.
[6]  Van Treuren, K.W. and Hays, A.W. (2017) A Study of Noise Generation on the E387, S823, NACA 0012, and NACA 4412 Airfoils for Use on Small-Scale Wind Turbines in the Urban Environment. Journal of Energy Resources Technology, 139, Article ID: 051217.
https://doi.org/10.1115/1.4037310
[7]  代元军, 汪建文, 吴伟民. S系列新翼型风力机叶尖近尾迹区域流场数值计算与分析[J]. 太阳能学报, 2014, 35(2): 195-201.
[8]  韩冰, 陈光斌. S形翼型性能的研究[J]. 江苏大学学报(自然科学版), 1990(2): 25-35.
[9]  Karthikeyan, N., Murugavel, K.K., Kumar, S.A., et al. (2015) Review of Aerodynamic Developments on Small Horizontal Axis Wind Turbine Blade. Renewable and Sustainable Energy Reviews, 42, 801-822.
https://doi.org/10.1016/j.rser.2014.10.086
[10]  Virk, M.S. (2016) Wind Turbine Blade Profile Thickness Effects on Atmospheric Ice Accretion. 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, 21-23 October 2016, 96-99.
https://doi.org/10.1109/ICPRE.2016.7871180
[11]  Pape, A.L. and Lecanu, J. (2004) 3D Navier-Stokes Computations of a Stall-Regulated Wind Turbine. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 7, 309-324.
https://doi.org/10.1002/we.129
[12]  叶正寅, 王刚, 杨永年, 杨炳渊. 利用N-S方程模拟机翼气动弹性的一种计算方法[J]. 计算物理, 2001(5): 397-401.
[13]  G??men, T., Van der Laan, P., Réthoré, P.E., et al. (2016) Wind Turbine Wake Models Developed at the Technical University of Denmark: A Review. Renewable and Sustainable Energy Reviews, 60, 752-769.
https://doi.org/10.1016/j.rser.2016.01.113
[14]  陈铠杰, 万德成. 基于黏性修正SST k-ω模型的水翼空化流数值模拟计算[J]. 水动力学研究与进展(A辑), 2019, 34(2): 224-231.
[15]  Abbott, I.H. and Von Doenhoff, A.E. (2012) Theory of Wing Sections: Including a Summary of Airfoil Data. Courier Corporation, New York.
[16]  马林静, 陈江, 杜刚, 曹人靖. 风力机翼型气动特性数值模拟[J]. 太阳能学报, 2010, 31(2): 203-209.
[17]  Marten, D., Wendler, J., Pechlivanoglou, G., et al. (2013) QBLADE: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines. The International Journal of Emerging Technology and Advanced Engineering, 3, 264-269.
[18]  Abbott, I.H., Von Doenhoff, A.E. and Stivers Jr., L. (1945) Summary of Airfoil Data.
[19]  Tangler, J.L. and Somers, D.M. (1995) NREL airfoil families for HAWTs. National Renewable Energy Lab, Golden, CO.
https://doi.org/10.2172/10106095
[20]  Eppler, R. (2012) Airfoil Design and Data. Springer Science & Business Media, New York.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413