全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于功率谱密度的打呼噜声提取研究
Power Spectrum Density-Based Snore Sound Extraction Research

DOI: 10.12677/OJAV.2020.81004, PP. 26-32

Keywords: 呼噜声信号,小波变换,功率谱密度函数,呼噜声成分
Snore Signal
, Wavelet Transform, Power Spectral Density Function, Snoring Components

Full-Text   Cite this paper   Add to My Lib

Abstract:

为确定鼾声的特征,定义并提取了基于频率域的功率谱密度的鼾声特征,对正常和异常鼾声进行了评价。本研究分为三个阶段:首先,通过微信号采集和预处理,利用小波分解方法去除噪声。其次,利用功率谱密度函数(PSD)结合阈值法提取频域特征。最后,对十三名健康学生的三十二小时正常呼吸声和三名患者的十一小时异常鼾声进行了研究。分析结果表明,异常呼吸声对应的两个主成分分别分布在10~300 Hz和500~800 Hz范围内,比从正常呼吸声中提取的主成分高。
To character the characteristics of snore sounds, the power spectrum density (PSD)-based snore sound features in the frequency-domain are defined and extracted to discriminate the normal and abnormal snore sounds. This study is generally divided into three stages: firstly, the snoring signal is collected via micro-recorder and is preprocessed to denoise the unexpected noise via wavelet decomposition method. Secondly, PSD combined with threshold line is employed to extract features in the frequency-domain. Finally, thirty-two hours normal breathing sounds from thirteen health students and eleven hours abnormal sounds from three patients are analyzed. The analysis results show that the two principal components corresponding to the abnormal sounds, greater than those extracted from normal sounds, are distributed in the range of 10~300 Hz and 500~800 Hz, respectively.

References

[1]  国家卫生健康委员会. 中国卫生健康统计年鉴2019 (中国卫生和计划生育统计年鉴2019) [Z]. 国家卫生健康委员会, 2019.
[2]  徐庆庆, 李向阳. 阻塞性睡眠呼吸暂停低通气综合征研究进展[J]. 实用医院临床杂志, 2016, 13(1): 138-141.
[3]  杜常欣, 朱敏, 于倩, 徐淑桦, 胡嘉忻. 儿童阻塞性口呼吸的诊断[J]. 中国临床新医学, 2018, 11(11): 1065-1071.
[4]  Yadollahi, A., Moussavi, Z., Yadollahi, A. and Moussavi, Z. (2005) Measuring Minimum Critical Flow for Normal Breath Sounds. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, 3, 2726-2729.
[5]  Koo, S.K., Kwon, S.B., Kim, Y.J., et al. (2017) Acoustic Analysis of Snoring Sounds Recorded with a Smartphone According to Obstruction Site in OSAS Patients. European Archives of Oto-Rhino-Laryngology, 274, 1735-1740.
https://doi.org/10.1007/s00405-016-4335-4
[6]  王璨. 阻塞性睡眠呼吸暂停低通气综合征患者的呼噜声分析与识别研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2017.
[7]  Hara, H., Murakami, N., Miyauchi, Y., et al. (2006) Acoustic Analysis of Snoring Sound by a Multidimensional Voice Program. Laryngoscope, 116, 379-381.
https://doi.org/10.1097/01.mlg.0000195378.08969.fd
[8]  Agrawal, S., Stone, P., Meguinness, K., et al. (2002) Sound Frequency Analysis and the Site of Snoring in Natural and Induced Sleep. Clinical Otolaryngology and Allied Sciences, 27, 162-166.
https://doi.org/10.1046/j.1365-2273.2002.00554.x
[9]  Perez-Padillla, J.R., Slawinski, E., Difrancesco, L.M., et al. (1993) Characteristics of the Snoring Noise in Patients with and without Occlusive sleep Apnea. The American Re-view of Respiratory Disease, 147, 635-644.
https://doi.org/10.1164/ajrccm/147.3.635
[10]  Fiz, J.A., Jand, R., Solfi-Soler, J., et al. (2010) Continuous Analysis and Monitoring of Snores and Their Relationship to the Apnea-Hypopnea Index. Laryngoscope, 120, 854-862.
https://doi.org/10.1002/lary.20815
[11]  Dalmasso, F. and Prota, R. (1996) Snoring:Analysis, Measurement, Clinical Implications and Applications.European Respiratory Society, 9, 146-159.
https://doi.org/10.1183/09031936.96.09010146
[12]  Azarbarzin, A. and Moussavi, Z. (2012) A Comparison between Recording Sites of Snoring Sounds in Relation to Upper Airway Obstruction. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, August 2012, 4246-4249.
https://doi.org/10.1109/EMBC.2012.6346904
[13]  郑君里, 应启珩, 杨为理. 信号与系统(第二版)上册[M]. 北京: 高等教育出版社, 2000: 349-353.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413