全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

亚磷酸酯催化的亚胺与丙烯酸甲酯的氮杂Baylis-Hillman反应研究
Phosphite Catalyzed Aza-Baylis-Hillman Reaction of Imines and Methyl Acrylates

DOI: 10.12677/SSC.2020.81004, PP. 33-41

Keywords: 氮杂Baylis-Hillman反应,亚磷酸酯,亚胺,丙烯酸甲酯,α-亚甲基β-磺酰胺基丙烯酸酯
aza-Bayllis-Hillman Reaction
, Phosphite, Imine, Methyl Acrylates, α-Methylene--Sulfonamido Acrylates

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以一系列亚磷酸酯为催化剂,对催化芳香醛亚胺与丙烯酸甲酯的氮杂Baylis-Hillman反应进行了系统研究。经过对该反应的溶剂、反应温度、底物浓度、催化剂进行了筛选和优化,我们发现亚磷酸二乙酯和1,4-二氮杂二环[2.2.2]辛烷(DABCO)能有效催化该反应。最后对一系列底物进行测试,所有反应能以中等到良好的收率得到α-亚甲基β-磺酰胺基丙烯酸酯产物。
The aza-Bayllis-Hillman reactions of imines and methyl acrylate catalyzed by achiral phosphite were studied. The reaction conditions, such as solvent, temperature, concentration, catalysts, and substrates were screened. The target products of α-methylene--sulfonamido acrylates were obtained with 25% - 78% yield.

References

[1]  Maguire, O.R. and O’donoghue, A.C. (2016) Homogeneous Acid Catalysis in Nonasymmetric Synthesis. RSC Green Chemistry Series (Sustainable Catalysis, Part 1), 40, 38-64.
https://doi.org/10.1039/9781782622093-00038
[2]  Yamamoto, H. (2013) Acid Catalysis in Organic Synthesis. Topics in Organometallic Chemistry, 44, 315-334.
https://doi.org/10.1007/3418_2012_51
[3]  Sereda, O., Tabassum, S. and Wilhelm, R. (2010) Lewis Acid Organocatalysts. Topics in Current Chemistry, Asymmetric Organocatalysis, 291, 349-393.
https://doi.org/10.1007/128_2008_17
[4]  Sevrain, C.M., Berchel, M., Couthon, H. and Jaffres, P.-A. (2017) Phosphonic Acid: Preparation and Applications. Beilstein Journal of Organic Chemistry, 13, 2186-2213.
https://doi.org/10.3762/bjoc.13.219
[5]  Novakov, I.A. and Rakhimov, A.I. (2016) Features of Homolytic Organophosphorus Synthesis and Its Application. Russian Journal of General Chemistry, 86, 508-511.
https://doi.org/10.1134/S1070363216030026
[6]  Shirakawa, S. and Kobayashi, S. (2006) Carboxylic Acid Catalyzed Three-Component Aza-Friedel-Crafts Reactions in Water for the Synthesis of 3-Substituted Indoles. Organic Letters, 8, 4939-4942.
https://doi.org/10.1021/ol062031q
[7]  Abedini, M., Shirini, F. and Shahriari, A. (2015) N-Sulfonic Acids: New, Efficient and Reusable Catalysts for the Acceleration of Organic Reactions. Current Organic Chemistry, 19, 2011-2039.
https://doi.org/10.2174/1385272819666150629174946
[8]  Yamato, T. (1998) Recent Developments of Perfluorinated Resin Sulfonic Acid (Nafion-H) Catalysis in Organic Synthesis. Recent Research Developments in Pure & Applied Chemistry, 2, 297-310.
[9]  Ishihara, K. (2015) Boronic Acid-Catalyzed Reactions of Carboxylic Acids. Topics in Organometallic Chemistry (Synthesis and Application of Organoboron Compounds), 49, 243-270.
https://doi.org/10.1007/978-3-319-13054-5_8
[10]  Zheng, H. and Hall, D.G. (2014) Boronic Acid Catalysis: An Atom-Economical Platform for Direct Activation and Functionalization of Carboxylic Acids and Alcohols. Aldrichimica Acta, 47, 41-51.
[11]  Wu, J., Fang, H. and Xu, W. (2009) Application Progress of Boronic Acid Catalyst in Organic Synthesis. Technische Informationsbibliothek, 29, 1175-1181.
[12]  Wabnitz, T.C. and Spencer, J.B. (2003) A General Br?nsted Acid-Catalyzed Hetero-Michael Addition of Nitrogen, Oxygen, and Sulfur Nucleophiles. Organic Letters, 5, 2141-2144.
https://doi.org/10.1021/ol034596h
[13]  Sun, J.W. and Kozmin, S.A. (2005) Br?nsted Acid-Promoted Cyclizations of 1-Siloxy-1,5-Diynes. Journal of the American Chemical Society, 127, 13512-13513.
https://doi.org/10.1021/ja055054t
[14]  Pan, S.C. and List, B. (2008) The Catalytic Acylcyanation of Imines. Chemistry-An Asian Journal, 3, 430-437.
https://doi.org/10.1002/asia.200700327
[15]  Aggarwal, V.K., Castro, A.M.M., Mereu, A. and Adams, H. (2002) The Use of Enantiomerically Pure N-Sulfinimines in Asymmetric Baylis-Hillman Reactions. Tetrahedron Letters, 43, 1577-1581.
https://doi.org/10.1016/S0040-4039(02)00021-7
[16]  Declerck, V., Martinez, J. and Lamaty, F. (2009) Aza-Baylis-Hillman Reaction, Chemical Reviews, 109, 1-48.
https://doi.org/10.1021/cr068057c
[17]  Buskens, P., Klankermayer, J. and Leitner, W. (2005) Bifunctional Activation and Racemization in the Catalytic Asymmetric Aza-Baylis-Hillman Reaction. Journal of the American Chemical Society, 127, 16762-16763.
https://doi.org/10.1021/ja0550024
[18]  Sergeeva, N., Golubev, A.S. and Burger, K. (2001) Synthesis of Partially Fluorinated -Amino Acids via Morita-Baylis-Hillman Reaction. Synthesis, 2, 281-285.
https://doi.org/10.1055/s-2001-10816
[19]  Xu, Y.M. and Shi, M. (2004) Highly Efficient aza-Baylis-Hillman Reaction of N-Tosylated Imines with MVK, Acrolein, and Phenyl Acrylate or α-Naphthyl Acrylate: Lewis Base Effects and A Convenient Method to Synthesize α, β-Unsaturated β-Amino Carbonyl Compounds. The Journal of Organic Chemistry, 69, 417-425.
https://doi.org/10.1021/jo035103p
[20]  Kim, M., Lee, K.Y., Lee, S. and Kim, J.N. (2004) Ring-Closing Metathesis toward the Synthesis of 2,5-Dihydrofuran and 2,5-Dihydropyrrole Skeletons from Baylis-Hillman Adducts. Tetrahedron Letters, 45, 2805-2808.
https://doi.org/10.1016/j.tetlet.2004.02.047
[21]  Kim, J.N., Lee, H.J., Lee, K.Y. and Kim, H.S. (2001) Synthesis of 3-Quinolinecarboxylic Acid Esters from the Baylis-Hillman Adducts of 2-Halobenzaldehyde N-Tosylimines. Tetrahedron Letters, 42, 3737-3740.
https://doi.org/10.1016/S0040-4039(01)00552-4
[22]  Basavaiah, D., Rao, P.D. and Hyma, R.S. (1996) The Baylis-Hillman Reaction: A Novel Carbon-Carbon Bond Forming Reaction. Tetrahedron, 52, 8001-8062.
https://doi.org/10.1016/0040-4020(96)00154-8

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413