全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydroxyl Enhanced Structured Pt/Nix/a-AlOOH Catalyst for Formaldehyde Oxidation at Room Temperature

DOI: 10.4236/mrc.2020.92002, PP. 21-34

Keywords: Structured Catalyst, AlOOH, Formaldehyde, NiOOH

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ni promoted structured plate-type Pt/Nix/a-AlOOH catalysts were developed to enhance the amount of hydroxyl group, therefore improving the catalytic activities for formaldehyde oxidation at room temperature. The analyzation results by XRD and HRTEM indicate that two kinds of materials, AlOOH and NiOOH, are detected on the surface of Pt/Nix/a-AlOOH. It can be seen from the result of TG that the hydroxyl group on the catalyst surface increased after Ni was loaded. Furtherly, XPS results show that the percentage of hydroxyl groups which can effectively absorb formaldehyde increases from 36.4% to 72.8% by doping Ni. In addition, the content of Pt0 increased from 27.5% to 45%. The results indicate that optimized Pt1.15/Ni3.1/a-AlOOH has the best catalytic activity with the CO2 conversion is 88% at 25°C and 100% at 40°C, while CO2 conversion over Pt1.2/a-AlOOH is 56% at 25°C and 100% at 100°C respectively. Hence, the Ni promoted plate-type Pt/a-AlOOH possesses high efficiency and it provides a new idea for catalyst design of formaldehyde oxidation.

References

[1]  Nie, L.H., Yu, J.G., Jaroniec, M. and Tao, F. (2016) Room-Temperature Catalytic Oxidation of Formaldehyde on Catalysts. Catalysis Science & Technology, 6, 3649-3669.
https://doi.org/10.1039/C6CY00062B
[2]  Jiang, C.J., Li, D.D., Zhang, P.Y., Li, J.G., Wang, J. and Yu, J.G. (2017) Formaldehyde and Volatile Organic Compound (VOC) Emissions from Particleboard: Identification of Odorous Compounds and Effects of Heat Treatment. Building and Environment, 117, 118-126.
https://doi.org/10.1016/j.buildenv.2017.03.004
[3]  Salthammer, T., Mentese, S. and Marutzky, R. (2010) Formaldehyde in the Indoor Environment. Chemical Reviews, 110, 2536-2572.
https://doi.org/10.1021/cr800399g
[4]  Sun, D., Le, Y., Jiang, C.J. and Cheng, B. (2018) Ultrathin Bi2WO6 Nanosheet Decorated with Pt Nanoparticles for Efficient Formaldehyde Removal at Room Temperature. Applied Surface Science, 441, 429-437.
https://doi.org/10.1016/j.apsusc.2018.02.001
[5]  Wang, J.L., Zhang, P.Y., Li, J.G., Jiang, C.J., Yunus, R. and Kim, J. (2015) Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water. Environmental science & technology, 49, 12372-12379.
https://doi.org/10.1021/acs.est.5b02085
[6]  Zhang, C.B., Liu, F.D., Zhai, Y.P., Ariga, H., Yi, N., Liu, Y.C., Asakura, K., Flytzani-Stephanopoulos, M. and He, H. (2012) Alkali-Metal-Promoted Pt/TiO2 Opens a More Efficient Pathway to Formaldehyde Oxidation at Ambient Temperatures. Angewandte Chemie, 51, 9628-9632.
https://doi.org/10.1002/anie.201202034
[7]  Huang, H. and Leung, D.Y.C. (2011) Complete Oxidation of Formaldehyde at Room Temperature Using TiO2 Supported Metallic Pd Nanoparticles. ACS Catalysis, 1, 348-354.
https://doi.org/10.1021/cs200023p
[8]  Yan, Z.X., Xu, Z.H., Yu, J.G. and Jaroniec, M. (2015) Highly Active Mesoporous Ferrihydrite Supported Pt Catalyst for Formaldehyde Removal at Room Temperature. Environmental Science & Technology, 49, 6637-6644.
https://doi.org/10.1021/acs.est.5b00532
[9]  Tang, X.F., Chen, J.L., Huang, X.M., Xu, Y.D. and Shen, W.J. (2008) Pt/MnOx-CeO2 Catalysts for the Complete Oxidation of Formaldehyde at Ambient Temperature. Applied Catalysis B: Environmental, 81, 115-121.
https://doi.org/10.1016/j.apcatb.2007.12.007
[10]  Zhang, C.B., Li, Y.B., Wang, Y.F. and He, H. (2014) Sodium-Promoted Pd/TiO2 for Catalytic Oxidation of Formaldehyde at Ambient Temperature. Environmental Science & Technology, 48, 5816-5822.
https://doi.org/10.1021/es4056627
[11]  Huang, H.B., Ye, X.G., Huang, H.L., Zhang, L. and Leung, D.Y.C. (2013) Mechanistic Study on Formaldehyde Removal over Pd/TiO2 Catalysts: Oxygen Transfer and Role of Water Vapor. Chemical Engineering Journal, 230, 73-79.
https://doi.org/10.1016/j.cej.2013.06.035
[12]  Yang, T.F., Huo, Y., Liu, Y., Rui, Z.B. and Ji, H. (2017) Efficient Formaldehyde Oxidation over Nickel Hydroxide Promoted Pt/γ-Al2O3 with a Low Pt Content. Applied Catalysis B: Environmental, 200, 543-551.
https://doi.org/10.1016/j.apcatb.2016.07.041
[13]  Wang, R.H. and Li, J.H. (2009) OMS-2 Catalysts for Formaldehyde Oxidation: Effects of Ce and Pt on Structure and Performance of the Catalysts. Catalysis Letters, 131, 500-505.
https://doi.org/10.1007/s10562-009-9939-5
[14]  Shi, Y.Y., Qiao, Z.W., Liu, Z.L. and Zuo, J.L. (2019) Cerium Doped Pt/TiO2 for Catalytic Oxidation of Low Concentration Formaldehyde at Room Temperature. Catalysis Letters, 149, 1319-1325.
https://doi.org/10.1007/s10562-019-02684-z
[15]  Jia, M.L., Shen, Y.N., Li, C.Y., Bao, Z. and Sheng, S.S. (2005) Effect of Supports on the Gold Catalyst Activity for Catalytic Combustion of CO and HCHO. Catalysis Letters, 99, 235-239.
https://doi.org/10.1007/s10562-005-2129-1
[16]  Yusuf, A., Snape, C., He, J., Xu, H.H., Liu, C.J., Zhao, M., Chen, G.Z., Tang, B., Wang, C.J, Wang, J.W. and Behera, A.N. (2017) Advances on Transition Metal Oxides Catalysts for Formaldehyde Oxidation: A Review. Catalysis Reviews, 18, 1-45.
https://doi.org/10.1080/01614940.2017.1342476
[17]  Wang, J.L., Li, J.G., Jiang, C.J., Zhou, P., Zhang, P.Y. and Yu, J.G. (2017) The Effect of Manganese Vacancy in Birnessite-Type MnO2 on Room-Temperature Oxidation of Formaldehyde in Air. Applied Catalysis B: Environmental, 204,147-155.
https://doi.org/10.1016/j.apcatb.2016.11.036
[18]  Rong, S.P., Zhang, P.Y., Wang, J.L., Liu, F., Yang, Y.J., Yang, G.L. and Liu, S. (2016) Ultrathin Manganese Dioxide Nanosheets for Formaldehyde Removal and Regeneration Performance. Chemical Engineering Journal, 306, 1172-1179.
https://doi.org/10.1016/j.cej.2016.08.059
[19]  Zheng, Y.L., Wang, W.Z., Jiang, D. and Zhang, L. (2016) Amorphous MnOx Modified Co3O4 for Formaldehyde Oxidation: Improved Low-Temperature Catalytic and Photothermocatalytic Activity. Chemical Engineering Journal, 284, 21-27.
https://doi.org/10.1016/j.cej.2015.08.137
[20]  Bai, B.Y., Arandiyan, H. and Li, J. (2013) Comparison of the Performance for Oxidation of Formaldehyde on Nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 Catalysts. Applied Catalysis B: Environmental, 142-143, 677-683.
https://doi.org/10.1016/j.apcatb.2013.05.056
[21]  Zeng, L., Song, W.L., Li, M.H., Zeng, D.W. and Xie, C.S. (2014) Catalytic Oxidation of Formaldehyde on Surface of H-TiO2/H-C-TiO2 without Light Illumination at Room Temperature. Applied Catalysis B: Environmental, 147, 490-498.
https://doi.org/10.1016/j.apcatb.2013.09.013
[22]  Park, S.M., Jeon, S.W. and Kim, S.H. (2014) Formaldehyde Oxidation Over Manganese-Cerium-Aluminum Mixed Oxides Supported on Cordierite Monoliths at Low Temperatures. Catalysis Letters, 144,756-766.
https://doi.org/10.1007/s10562-014-1207-7
[23]  Huang, Q., Lu, Y.Y., Si, H., Yang, B., Tao, T., Zhao, Y.X. and Chen, M. (2018) Study of Complete Oxidation of Formaldehyde over MnOx-CeO2 Mixed Oxide Catalysts at Ambient Temperature. Catalysis Letters, 148, 2880-2890.
https://doi.org/10.1007/s10562-018-2479-0
[24]  He, M., Ji, J., Liu, B.Y. and Huang, H. (2019) Reduced TiO2 with Tunable Oxygen Vacancies for Catalytic Oxidation of Formaldehyde at Room Temperature. Applied Surface Science, 473, 934-942.
https://doi.org/10.1016/j.apsusc.2018.12.212
[25]  Cui, W.Y., Xue, D., Yuan, X.L., Zheng, B., Jia, M.J. and Zhang, W.X. (2017) Acid-Treated TiO2 Nanobelt Supported Platinum Nanoparticles for the Catalytic Oxidation of Formaldehyde at Ambient Conditions. Applied Surface Science, 411, 105-112.
https://doi.org/10.1016/j.apsusc.2017.03.169
[26]  Chen, B.B., Zhu, X.B., Crocker, M., Wang, Y. and Shi, C. (2013) Complete Oxidation of Formaldehyde at Ambient Temperature over γ-Al2O3 Supported Au Catalyst. Catalysis Communications, 42, 93-97.
https://doi.org/10.1016/j.catcom.2013.08.008
[27]  Yan, Z.X., Xu, Z.H., Yu, J.G. and Jaroniec, M. (2016) Enhanced Formaldehyde Oxidation on CeO2/AlOOH-Supported Pt Catalyst at Room Temperature. Applied Catalysis B: Environmental, 199, 458-465.
https://doi.org/10.1016/j.apcatb.2016.06.052
[28]  Chen, F., Wang, F., Li, Q., Cao, C.Y., Zhang, X., Ma, H. and Guo, Y. (2017) Effect of Support (Degussa P25 TiO2, Anatase TiO2, γ-Al2O3, and AlOOH) of Pt-Based Catalysts on the Formaldehyde Oxidation at Room Temperature. Catalysis Communications, 99, 39-42.
https://doi.org/10.1016/j.catcom.2017.05.019
[29]  Liu, B.C., Liu, Y., Li, C.Y., Hu, W.T., Jing, P., Wang, Q. and Zhang, J. (2012) Three-Dimensionally Ordered Macroporous Au/CeO2-Co3O4 Catalysts with Nanoporous Walls for Enhanced Catalytic Oxidation of Formaldehyde. Applied Catalysis B: Environmental, 127, 47-58.
https://doi.org/10.1016/j.apcatb.2012.08.005
[30]  Chen, B.B., Shi, C., Crocker, M., Wang, Y. and Zhu, A. (2013) Catalytic Removal of Formaldehyde at Room Temperature over Supported Gold Catalysts. Applied Catalysis B: Environmental, 132-133, 245-255.
https://doi.org/10.1016/j.apcatb.2012.11.028
[31]  Li, H.F., Zhang, N., Peng, C., Luo, M.F. and Lu, J.Q. (2011) High Surface Area Au/CeO2 Catalysts for Low Temperature Formaldehyde Oxidation. Applied Catalysis B: Environmental, 110, 279-285.
https://doi.org/10.1016/j.apcatb.2011.09.013
[32]  Ou, C.C., Chen, C.H., Chan, T.S., Chen, C.S. and Cheng, S. (2019) Influence of Pretreatment on the Catalytic Performance of Ag/CeO2 for Formaldehyde Removal at Low Temperature. Journal of Catalysis, 380, 43-54.
https://doi.org/10.1016/j.jcat.2019.09.028
[33]  Chen, Y., He, J.H., Tian, H., Wang, D.H. and Yang, Q.W. (2014) Enhanced Formaldehyde Oxidation on Pt/MnO2 Catalysts Modifiedwith Alkali Metal Salts. Journal of Colloid and Interface Science, 428, 1-7.
https://doi.org/10.1016/j.jcis.2014.04.028
[34]  Sun, X.C., Lin, J., Guan, H.L., Li, L., Sun, L., Wang, Y.H., Miao, S., Su, Y. and Wang, X.D. (2018) Complete Oxidation of Formaldehyde over TiO2 Supported Subnanometer Rh Catalyst at Ambient Temperature. Applied Catalysis B: Environmental, 226, 575-584.
https://doi.org/10.1016/j.apcatb.2018.01.011
[35]  Yan, Z.X., Xu, Z.H., Yu, J.G. and Jaroniec, M. (2017) Effect of Microstructure and Surface Hydroxyls on the Catalytic Activity of Au/AlOOH for Formaldehyde Removal at Room Temperature. Journal of Colloid and Interface Science, 501, 164-174.
https://doi.org/10.1016/j.jcis.2017.04.050
[36]  Zhang, Q., Wang, T.Y., Fu, W.Z. and Duan, X.Z. (2018) Facet-Dependent Performance of Hydroxylated Anodic Boehmite for Catalyzing Gaseous Formaldehyde Oxidation. Catalysis Letters, 148, 1904-1913.
https://doi.org/10.1007/s10562-018-2400-x
[37]  Zhang, Q., Jiang, Z.R., Sun, D.M., Han, D.Y. and Zhu, Z.B. (2012) Effect of Crystalline State of Anodized Porous Al2O3/Al as Supports by Hydration. Journal of Inorganic Materials, 27, 693-698.
https://doi.org/10.3724/SP.J.1077.2012.11552
[38]  Zhang, Q., Sun, S.B., Wang, T.Y., Liu, F., Yang, J.H. and Cheng, A. (2018) Fe Promoted Structured Pt/Fex/a-AlOOH Catalyst for Room Temperature Oxidation of Low Concentration HCHO. Chemical Engineering Processing, 132, 169-174.
https://doi.org/10.1016/j.cep.2018.07.003
[39]  Zhao, G.B., Zhang, Q., Cheng, F. and Wang, T.Y. (2018) Effects of Sodium-Modified Pt/AlOOH Catalyst on Activity of Formaldehyde Oxidation. Journal Chemical Industry, 69, 4722-4727.
[40]  Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R. and Smart, R.S.C. (2011) Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257, 2717-2730.
https://doi.org/10.1016/j.apsusc.2010.10.051

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133