全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Metallated Schiff-Base Macromolecules as Alternative Metalloprotein Electron Transfer Intermediates

DOI: 10.4236/jsemat.2020.102003, PP. 34-54

Keywords: Cytochrome-C, Macromolecule, Metallated, Metalloproteins, Schiff-Base

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the construction of biosensors, enzymes function as mediators converting biological signals generated by specific biological processes, into electrochemical signals. The ideology of bio-sensor design is retention of electron transfer activity of the enzyme utilizing superior interfacial architecture. In this work a Schiff-base macromolecule has been synthesized by reflux of 2, 3-diaminonaphthalene and pyrrole-2-carboxaldehyde starting materials. The Schiff-base ligand was subsequently complexed with FeCl24H2O under reflux, to produce the Fe-Schiff-base complex. The Schiff-base ligand and Fe-Schiff-base complex were characterized using nuclear magnetic resonance (NMR) spectroscopy, Ultra Violet/Visible (UV/Vis) spectroscopy, Fourier transfer infrared resonance (FTIR) and electron energy loss spectroscopy (EELS) to confirm the structure of the synthesis products. NMR spectroscopy confirmed the imide linkage of Schiff-base formation as two symmetrical peaks at 8.1 and 7.7 ppm respectively. Comparison of starting materials and product spectra by UV/Vis spectroscopy confirmed the disappearance of the diaminonaphthalene peak at 250 nm as evidence of complete conversion to product. FTIR spectroscopy of the Schiff-base ligand confirmed the formation of the imine bond at 1595 cm-1. EELS spectra comparing FeCl24H2O and the Fe-Schiff-base complex, showed good agreement in the energy loss profiles associated with changes to the electronic arrangement of Fe d-orbitals. EDS

References

[1]  Chen, X.X., Ferrigno, R., Yang, J. and Whitesides, G.M. (2002) Redox Properties of Cytochrome c Adsorbed on Self-Assembled Monlayers: A Probe for Protein Confrmation and Orientation. Langmuir, 18, 7009-7015.
https://doi.org/10.1021/la0204794
[2]  Hannibal, L., Tomasina, F., Capdevila, D.A., Demicheli, V., Totora, V., Alvarez-Paggi, D., Jemmerson, R., Murgida, D.H. and Radi, R. (2016) Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry, 55, 407-428.
https://doi.org/10.1021/acs.biochem.5b01385
[3]  Yue, H.J., Waldeck, D.H., Petrović, J. and Clark, R.A. (2006) The Effect of Ionic Strength on the Electron-Transfer Rate of Surface Immobilized Cytochrome c. Journal of Physical Chemistry B, 110, 5062-5072.
https://doi.org/10.1021/jp055768q
[4]  Hanrahan, K.L., Macdonald, S.M. and Roscoe, S.G. (1996) An Electrochemical Study of the Interfacial and Conformational Behaviour of Cytochrome c and Other Heme Proteins. Elecrrochimica Acta, 41, 2469-2419.
https://doi.org/10.1016/0013-4686(96)00035-7
[5]  Bonanni, B., Alliata, D., Bizzarri, A.R. and Cannistraro, S. (2003) Topological and Electron-Transfer Properties of Yeast Cytochrome c Adsorbed on Bare Gold Electrodes. ChemPhysChem, 4, 1183-1188.
https://doi.org/10.1002/cphc.200300784
[6]  Bond, A.M., Hill, H., Allen, O., Komorsky-Lovrić, Š., Lovric, M., McCartby, M., Psalti, I. and Walton, N.J. (1992) Investigation of the Mass Transport Process in the Voltammetry of Cytochrome c at 4,4’-Bipyridyl Disulfide Modified Stationary and Rotated Macro- and Microdisk Gold Electrodes. The Journal of Physical Chemistry, 96, 8100-8105.
https://doi.org/10.1021/j100199a051
[7]  Eguílaz, M., Agüí, L., Yáñez-Sedeño, P. and Pingarrón, J.M. (2010) A Biosensor Based on Cytochrome c Immobilization on a Poly-3-methylthiophene Multi-Walled Carbon Nanotubes Hybrid-Modified Electrode. Application to the Electrochemical Determination of Nitrite. Journal of Electroanalytical Chemistry, 644, 30-35.
https://doi.org/10.1016/j.jelechem.2010.03.025
[8]  Jancura, D., Stanicova, J., Palmer, G. and Fabian, M. (2014) How Hydrogen Peroxide Is Metabolized by Oxidized Cytochrome c Oxidase. Biochemistry, 53, 3564-3575.
https://doi.org/10.1021/bi401078b
[9]  Guo, C.X., Wang, J.F., Chen, X.Z., Li, Y.J., Wu, L.F., Zhang, J. and Tao, C.A. (2018) Construction of a Biosensor Based on a Combination of Cytochrome c, Graphene, and Gold Nanoparticles. Sensors (Basel, Switzerland), 19, 12-14.
https://doi.org/10.3390/s19010040
[10]  Al-Amiery, A.A. (2012) Antimicrobial and Antioxidant Activities of New Metal Complexes Derived from (E)-3-((5-phenyl-1,3,4-oxadiazol-2-ylimino)methyl) naphthalen-2-ol. Medical Chemistry Research, 21, 3204-3213.
https://doi.org/10.1007/s00044-011-9880-1
[11]  Guzik, U., Hupert-Kocurek, K. and Wojcieszynska, D. (2014) Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases. Molecules, 19, 8995-9018.
https://doi.org/10.3390/molecules19078995
[12]  Grigoras, M., Vacareanu, L., Ivan, T. and Catargiu, A.M. (2013) Photophysical Properties of Isoelectronic Oligomers with Vinylene, Imine, Azine and Ethynylene Spacers Bearing Triphenylamine and Carbazole End-Groups. Dyes and Pigments, 98, 71-81.
https://doi.org/10.1016/j.dyepig.2013.01.025
[13]  Li, S.S., Ye, L., Zhao, W.C., Zhang, S.Q., Mukherjee, S., Ade, H. and Hou, J.H. (2016) Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 28, 9423-9429.
https://doi.org/10.1002/adma.201602776
[14]  Caban, K., Offenhäusser, A. and Mayer, D. (2009) Electrochemical Characterization of the Effect of Gold Nanoparticles on the Electron Transfer of Cytochrome c. Physica Status Solidi (a), 206, 489-500.
https://doi.org/10.1002/pssa.200880473
[15]  Tanimura, R., Hill, M.G., Margoliash, E.M., Niki, K., Ohno, H. and Gray, H.B. (2002) Active Carboxylic Acid-Terminated Alkanethiol Self-Assembled Monolayers on Gold Bead Electrodes for Immobilization of Cytochromes c. Electrochemical and Solid-State Letters, 5, E67-E70.
https://doi.org/10.1149/1.1517770
[16]  Ward, M., Botha, S., Iwuoha, E. and Baker, P. (2014) Actuation Behaviour of a Derivatized Pyrrole Accordion Type Polymer. International Journal of Electrochemical Science, 9, 4776-4792.
[17]  Xavier, A. and Srividhya, N. (2014) Synthesis and Study of Schiff-base Ligands. IOSR Journal of Applied Chemistry, 7, 6-15.
https://doi.org/10.9790/5736-071110615
[18]  Muzammil, K., Trivedi, P. and Khetani, D.B. (2015) Synthesis and Characterization of Schiff-base m-Nitro Aniline and Their Complexes. Research Journal of Chemical Sciences, 5, 52-55.
[19]  Simionescu, C.I., Grigoras, M., Cianga, I. and Olaru, N. (1998) Synthesis of New Conjugated Polymers with Schiff-base Structure Containing Pyrrolyl and Naphthalene Moieties and HMO Study of the Monomers Reactivity. European Polymer Journal, 34, 891-898.
https://doi.org/10.1016/S0014-3057(97)00226-7
[20]  Faizul, A., Satendra, S., Lal, K.S. and Om, P. (2007) Synthesis of Schiff Bases of Naphtha[1,2-d]thiazol-2-amine and Metal Complexes of 2-(2’-hydroxy)benzylide neaminonaphthothiazole as Potential Antimicrobial Agents. Journal of Zhejiang University Science B, 8, 446-452.
https://doi.org/10.1631/jzus.2007.B0446
[21]  Barbon, S.M., Staroverov, V.N. and Gilroy, J.B. (2015) Effect of Extended π Conjugation on the Spectroscopic and Electrochemical Properties of Boron Difluoride Formazanate Complexes. Journal of Organic Chemistry, 80, 5226-5235.
https://doi.org/10.1021/acs.joc.5b00620
[22]  Isaiah, A.A. and Collins, U.I. (2013) A Theoretical Study on the Effect of Substituents on the Properties of Pyrrole and Thiophene. New York Science Journal, 6, 99-105.
[23]  Sek, D., Siwy, M., Bijak, K., Filapek, M., Malecki, G., Nowak, E.M., Sanetra, J., Jarczyk-jedryka, A., Laba, K. and Lapkowski, M. (2015) Optical and Electrochemical Properties of Novel Thermally Stable Schiff Bases Bearing Naphthalene Unit. Journal of Electroanalytical Chemistry, 751, 128-136.
https://doi.org/10.1016/j.jelechem.2015.05.040
[24]  Cheng, J.H., Wei, K.Y., Ma, X.F., Zhou, X.G. and Xiang, H.F. (2013) Synthesis and Photophysical Properties of Colorful Salen-Type Schiff Bases. Journal of Physical Chemistry C, 117, 16552-16563.
https://doi.org/10.1021/jp403750q
[25]  Doddi, G., Illuminati, G., Mencarelli, P. and Stegel, F. (1976) Nucleophilic Substitution at the Pyrrole Ring. Comparison with Furan, Thiophene, and Benzene Rings in Piperidinodenitration. Journal of Organic Chemistry, 41, 2824-2826.
https://doi.org/10.1021/jo00879a008
[26]  Liu, Z.D., Liu, D.Y. and Hider, R.C. (2002) Iron Chelator Chemistry. In: Iron Chelation Therapy. Advances in Experimental Medicine and Biology, Springer, Boston, 141-142.
https://doi.org/10.1007/978-1-4615-0593-8_8
[27]  Hawrelak, E.J., Bernskoetter, W.H., Lobkovsky, E., Yee, G.T., Bill, E. and Chirik, P.J. (2005) Square Planar vs Tetrahedral Geometry in Four Coordinate Iron(II) Complexes. Inorganic Chemistry, 44, 3103-3111.
https://doi.org/10.1021/ic048202+
[28]  Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J. and Abdullah, B. (2017) Metal Complexes of Schiff Base: Preparation, Characterization and Antibacterial Activity. Arabian Journal of Chemistry, 10, S1639-S1644.
https://doi.org/10.1016/j.arabjc.2013.06.006
[29]  Sumrra, S.H., Ibrahim, M., Ambreen, S., Imran, M., Danish, M. and Rehmani, F.S. (2014) Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases. Bioinorganic Chemistry and Applications, 10, 1-10.
https://doi.org/10.1155/2014/812924
[30]  Tümer, M., Akgün, E., Toroğlu, S., Kayraldiz, A. and Dönbak, L. (2008) Synthesis and Characterization of Schiff-base Metal Complexes: Their Antimicrobial, Genotoxicity and Electrochemical Properties. Journal of Coordination Chemistry, 61, 2935-2949.
https://doi.org/10.1080/00958970801989902
[31]  Chaudhary, N.K. and Mishra, P. (2017) Metal Complexes of a Novel Schiff-base Based on Penicillin: Characterization, Molecular Modeling, and Antibacterial Activity Study. Bioinorganic Chemistry and Applications, 2017, Article ID: 6927675.
https://doi.org/10.1155/2017/6927675
[32]  Beyazit, N., Çobanoğlu, S. and Demetgül, C. (2017) Metal Complexes of Perimidine and Schiff-base Ligands Bearing Both Naphthalene and Chromone Moieties: Synthesis and Catalytic Activity. Bulgarian Chemical Communications, 49, 115-121.
[33]  Tümer, M. (2007) Polydentate Schiff-Base Ligands and Their Cd(II) and Cu(II) Metal Complexes: Synthesis, Characterization, Biological Activity and Electrochemical Properties. Journal of Coordination Chemistry, 60, 2051-2065.
https://doi.org/10.1080/00958970701236727
[34]  Khalil, M.M.H., Ismail, E.H., Mohamed, G.G., Zayed, E.M. and Badr, A. (2012) Synthesis and Characterization of a Novel Schiff-base Metal Complexes and Their Application in Determination of Iron in Different Types of Natural Water. Open Journal of Inorganic Chemistry, 2, 13-21.
https://doi.org/10.4236/ojic.2012.22003
[35]  Grosvenor, A.P., Kobe, B.A., Biesinger, M.C. and Mcintyre, N.S. (2004) Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds. Surface and Interface Analysis, 36, 1564-1574.
https://doi.org/10.1002/sia.1984
[36]  Sparrow, T.G., Williams, B.G., Rao, C.N. and Thomas, J. (1984) L3/L2 White-Line Intensity Ratios in the Electron Energy-Loss Spectra of 3d Transition-Metal Oxides. Chemical Physical Letter, 108, 547-550.
https://doi.org/10.1016/0009-2614(84)85051-4
[37]  Al-Salih, T.E. and Al-Taha, R.W. (2014) Cyclic Voltammerty Study of Schiff-Base Ligand and the Effect of Groups Substitutes on Potential and Electroactivity (C). Der Pharma Chemica, 6, 42-50.
[38]  Bott, A.W. (1999) Characterization of Chemical Reactions Coupled to Electron Transfer Reactions Using Cyclic Voltammetry. Current Separations, 18, 9-16.
[39]  Mostany, J. and Scharifker, B.R. (1997) Impedance Spectroscopy of Undoped, Doped and Overoxidized Polypyrrole Films. Synthetic Metals, 87, 179-185.
https://doi.org/10.1016/S0379-6779(97)80105-1
[40]  Frew, J.E. and Hill, H.A. (1988) Direct and Indirect Electron Transfer between Electrodes and Redox Proteins. European Journal of Biochemistry, 172, 261-269.
https://doi.org/10.1111/j.1432-1033.1988.tb13882.x
[41]  Murgida, D.H. and Hildebrandt, P. (2005) Redox and Redox-Coupled Processes of Heme Proteins and Enzymes at Electrochemical Interfaces. Physical Chemistry Chemical Physics, 7, 3773-3784.
https://doi.org/10.1039/b507989f
[42]  Sagara, T., Niwa, K., Sone, A., Niki, K. and Hinnen, C. (1990) Redox Reaction Mechanism of Cytochrome c at Modified Gold Electrodes. Langmuir, 6, 254-262.
https://doi.org/10.1021/la00091a042
[43]  Eddowes, M.J., Hill, H. and Allen, O. (1979) Electrochemistry of Horse Heart Cytochrome c. Journal of the American Chemical Society, 101, 4461-4464.
https://doi.org/10.1021/ja00510a003
[44]  Abass, A.K. and Hart, J.P. (2001) Direct Electrochemistry of Cytochrome c at Plain and Membrane Modified Screen-Printed Carbon Electrodes. Electrochimica Acta, 46, 829-836.
https://doi.org/10.1016/S0013-4686(00)00668-X
[45]  Latimer, W.M. and Hildebrand, J.H. (1944) Iron. In: Reference Book of Inorganic Chemistry, The Macmillan Company, New York, 380-399.
[46]  Bhatt, V. (2016) Thermodynamics and Kinetics of Complex Formation. In: Essentials of Coordination Chemistry, Academic Press, Cambridge, 111-137.
https://doi.org/10.1016/B978-0-12-803895-6.00004-5
[47]  Collins, M.J., Ray, K. and Que, L. (2006) Electrochemical Generation of a Nonheme Oxoiron(IV) Complex. Inorganic Chemistry, 45, 8009-8011.
https://doi.org/10.1021/ic061263i

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413