全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Efficient Non-Linear Application Algorithm Predictive Model for a Multi Aircraft Landing Dynamic System AIRLADYS R2019A+

DOI: 10.4236/ojop.2020.92002, PP. 15-26

Keywords: Glade Software, Aircraft Dynamic System, Optimal Control System, Dynamic Programming, GUI GPL Application “AIRLADYS R2019A+

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this paper is to set up an efficient nonlinear application algorithm predictive model for a multi aircraft landing dynamic system called “Aircraft Landing Dynamic System, Release 2019A+ version “AIRLADYS R2019A+”. This programming software combines dynamic programming technic for mathematical computing and optimisation run under AMPL and KNITRO Solver. It uses also a descriptive programming technic for software design. The user interfaces designed in Glade are saved as XML, and by using the GtkBuilder GTK+ object these can be loaded by applications dynamically as needed. By using GtkBuilder, Glade XML files can be used in numerous programming languages including C, C++, C#, Java, Perl, Python, AMPL, etc. Glade is Free Software released under the GNU GPL License. By these tools, the solved problem is a mathematical modelization problem as a non-convex optimal control governed by ordinary non-linear differential equations. The dynamic programming technic is applied because it is a sufficiently high order and it does not require computation of the partial derivatives of the aircraft dynamic. This application will be coded with Linux system on 64 bit operating system, but it can also be run on the windows system. High running performances are obtained with results giving feasible trajectories with a robust optimizing of the objective function.

References

[1]  Roux, E. (2006) Modèle de longueur de piste au décollage-atterrissage, Avions de Transport Civil. SUPAERO-ONERA, 345.
[2]  Fourer, R., Gay, D.-M. and Kernigham, B.-W. (2003) A Modelling Language for Mathematical Programming. 2nd Edition, Thomson Brooks, New York.
http://www.ampl.com
[3]  Waltz, R.-A. and Plantenga, T.-D. (2008) KNITRO User’s Manual, Version 5.2. University of Colorado, Boulder, CO.
http://www.ziena.com
[4]  Nahayo, F. (2012) Modèle mathématique d’optimisation non-inéaire du bruit des avions commerciaux en approche sous contraintes energétiques. Thèse de Mathématiques Appliquées de l’UCBL I.
[5]  Blin, K. (2000) Stochastic Conflict Detection for Air Traffic Management. Eurocontrol Experimental Centre Publications Office, France.
https://doi.org/10.2514/6.2000-4270
[6]  Boiffier, J.-L. (1999) The Dynamics of Flight, The Equations, SUPAéRO (Ecole Nationale Supérieure de l’Aéronautique et de l’Espace) et ONERA-CERT. Toulouse 25 Janvier.
[7]  Roux, E. (2005) Pour une approche analytique de la dynamique du vol, Thèse, SUPAERO-ONERA.
[8]  Abdallah, L., Haddou, M. and Khardi, S. (2010) Optimization of Operational Aircraft Parameters Reducing Noise Emission. Applied Mathematical Sciences, 4, 515-535.
[9]  Destunder, P. (2010) Méthodes numériques pour ingénieurs. Hermes sciences publications.
[10]  Chryssoverghi, I., Colestos, J. and Kokkinis, B. (2007) Classical and Relaxed Optimization Methods for Optimal Control Problems. International Mathematical Forum, 2, 1477-1498.
https://doi.org/10.12988/imf.2007.07135
[11]  Fortin, A. (2008) Analyse numérique pour ingénieurs. Troisième edition, Presses internationales polytechnique.
[12]  Harris, M.-M. and Mary, E. How Do We Describe Aircraft Noise? NASA TM-82712, FICAN.
http://www.fican.org
[13]  Harvey Hubbard, H. (1994) Aeroacoustics of Flight Vehicles, Theory and Practices Volume 1: Noise sources and Volume 2: Noise Control. NASA Langley Research Center, Hampton, VA.
[14]  James Stone, R., Groesbeck, D.E. and Zola, C.L. (1991) An Improved Prediction Method for Noise Generated by Conventional Profile Coaxial Jets. NASA TM-82712, AIAA-81-1991.
[15]  Khardi, S., Nahayo, F. and Haddou, M. (2011) The Trust Region Sequential Quadratic Programming Method Applied to Two-Aircraft Acoustic Optimal Control Problem. Applied Mathematical Sciences, 5, 1953-1976.
[16]  Khardi, S. (2010) Mathematical Model for Advanced CDA and Takeoff Procedures Minimizing Aircraft Environmental Impact. International Mathematical Forum, 5, 1747-1774.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133