全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation of Quantum Entanglement through a Trapped Three Level Ion Accompanied with Beyond Lamb-Dicke Regime

DOI: 10.4236/jqis.2020.102003, PP. 23-35

Keywords: Entangled State, Trapped Three-Level Ion, Lamb-Dick Parameter, Rabi Frequency, Quantum Measures

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, our goal is to obtain the entanglement dynamics of trapped three-level ion interaction two laser beams in beyond Lamb-Dicke parameters. Three values of LDP, η=0.09, η=0.2 and η=0.3 are given. We used the concurrence and the negativity to measure the amount of quantum entanglement created in the system. The interacting trapped ion led to the formation of phonons as a result of the coupling. In two quantum systems (ion-phonons), analytical formulas describing both these measurements are constructed. These formulas and probability coefficients include first order terms of final state vector. We report that long survival time of entanglement can be provided with two quantum measures. Negativity and concurrence maximum values are obtained N = 0.553 and for LDP = 0.3. As a similar, the other two values of LDP are determined and taken into account throughout this paper. For a more detailed understanding of entanglement measurement results, “contour plot” was preferred in Mathematica 8.

References

[1]  Heisenberg, W. (1930) The Physical Principles of the Quantum Theory. Dover Publications, New York.
[2]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
https://doi.org/10.1103/PhysRev.47.777
[3]  Bohr, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 48, 696-702.
https://doi.org/10.1103/PhysRev.48.696
[4]  Schördinger, E. (1935) Die gegenwrtige situation in der quantenmechanik. Naturwissenschaften, 23, 807-812.
https://doi.org/10.1007/BF01491891
[5]  Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[6]  Inamori, H. (2019) Quantum Measurement Cannot Be a Local Physical Process. Journal of Quantum Information Science, 9, 171-178.
https://doi.org/10.4236/jqis.2019.94009
[7]  Dermez, R. (2016) Generalized Concurrence and Negativity in Time-Dependent C3 × C5 = C15 Dimensional Ionic-Phononic Systems. Journal of Russian Laser Research, 37, 572-580.
https://doi.org/10.1007/s10946-016-9609-1
[8]  Guha Majumdar, M. (2018) Quantum Information Processing Using the Exchange Interaction. Journal of Quantum Information Science, 8, 139-160.
https://doi.org/10.4236/jqis.2018.84010
[9]  Dermez, R. and Mustecaplıoğlu, O.E. (2009) Long-Lived Entangled Qudits in a Trapped Three-Level Ion beyond the Lamb-Dicke Limit. Physica Scripta, 79, Article ID: 015304.
https://doi.org/10.1088/0031-8949/79/01/015304
[10]  Dermez, R. and Özen, S. (2010) Higher Dimensional Entangled Qudits in a Trapped Three-Level Ion. The European Physical Journal D, 57, 431-437.
https://doi.org/10.1140/epjd/e2010-00051-6
[11]  Dermez, R., Deveci, B. and Güney, D.Ö. (2013) Quantum Dynamics of a Three-Level Trapped Ion under a Time-Dependent Interaction with Laser Beams. The European Physical Journal D, 67, 120.
https://doi.org/10.1140/epjd/e2013-30649-9
[12]  Maunz, P., Younge, K.C., Matsukevich, D.N., Monreo, C., et al. (2007) Quantum Interference of Photon Pairs from Two Remote Trapped Atomic Ions. Nature Physics, 3, 538-541.
https://doi.org/10.1038/nphys644
[13]  Wotters, W.K. (1998) Entanglement of Formation of an Arbitrary State of Two Qubits. Physical Review Letters, 80, 2245.
https://doi.org/10.1103/PhysRevLett.80.2245
[14]  Kim, J.S., Das, A. and Sanders, B.C. (2009) Entanglement Monogamy of Multipartite Higher-Dimensional Quantum Systems Using Convex-Roof Extended Negativity. Physical Review A, 79, Article ID: 012329.
https://doi.org/10.1103/PhysRevA.79.012329
[15]  Abdel-Aty, M. (2005) Information Entropy of a Time-Dependent Three-Level Trapped Ion Interacting with a Laser Field. Journal of Physics A: Mathematical and General, 38, 8589.
https://doi.org/10.1088/0305-4470/38/40/008
[16]  Abdel-Aty, M. (2000) Influence of a Kerr-like Medium on the Evolution of Field Entropy and Entanglement in a Three-Level Atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 33, 2665.
https://doi.org/10.1088/0953-4075/33/14/305
[17]  Dermez, R. (2017) Concurrence and Negativity as a Family of Two Measures Elaborated for Pure Qudit States. Journal of Russian Laser Research, 38, 408-415.
https://doi.org/10.1007/s10946-017-9661-5
[18]  Dermez, R. (2020) Quantifying of Quantum Entanglement in SchrÖdinger Cat States with the Trapped Ion-Coherent System for the Deep Lamb-Dick Regime. Indian Journal of Physics.
https://doi.org/10.1007/s12648-020-01697-4
[19]  James, D.F.V. (1998) Quantum Computation and Quantum Information Theory. Applied Physics B, 66, 181-190.
https://doi.org/10.1007/s003400050373
[20]  Monreo, C., Meekhof, D.M., King, B.E. and Wineland, D.J. (1996) A “SchrÖdinger Cat” Superposition State of an Atom. Science, 272, 1131-1136.
https://doi.org/10.1126/science.272.5265.1131
[21]  Müstecaplıoğlu, Ö.E. (2003) Motional Macroscopic Quantum Superposition States of a Trapped Three-Level Ion. Physical Review A, 68, Article ID: 023811.
https://doi.org/10.1103/PhysRevA.68.023811
[22]  Vidal, G. and Werner, R.F. (2003) Computable Measure of Entanglement. Physical Review A, 65, Article ID: 032314.
https://doi.org/10.1103/PhysRevA.65.032314
[23]  Lee, S., Chi, D.P., Oh, S.D. and Kim, J. (2003) Convex-Roof Extended Negativity as an Entanglement Measure for Bipartite Quantum Systems. Physical Review A, 68, Article ID: 062304.
https://doi.org/10.1103/PhysRevA.68.062304
[24]  Hill, S. and Wotters, W.K. (1997) Entanglement of a Pair of Quantum Bits. Physical Review Letters, 78, 5022.
https://doi.org/10.1103/PhysRevLett.78.5022
[25]  Dermez, R. (2013) Quantification of Mixed-State Entanglement in a Quantum System Interacting with Two Time-Dependent Lasers. Journal of Russian Laser Research, 34, 192-202.
https://doi.org/10.1007/s10946-013-9342-y
[26]  Tu, Z., Kharzeev, D.E. and Ullrich, T. (2020) Einstein-Podolsky-Rosen Paradox and Quantum Entanglement at Subnucleonic Scales. Physical Review Letters, 124, Article ID: 062001.
https://doi.org/10.1103/PhysRevLett.124.062001
[27]  Bertini, B., Tartaglia, E. and Calabrese, P. (2018) Entanglement and Diagonal Entropies after a Quench with No Pair Structure. Journal of Statistical Mechanics: Theory and Experiment, 1806, Article ID: 063104.
https://doi.org/10.1088/1742-5468/aac73f
[28]  Hu, J. and Ji, Y. (2020) Manipulating of the Entropic Uncertainty in Open Quantum System: Via Quantum-Jump-Based Feedback Control. International Journal of Theoretical Physics, 59, 974-982.
https://doi.org/10.1007/s10773-020-04385-5
[29]  Dermez, R. (2016) Comparing Concurrence and Negativity in Time-Dependent Ionic-Phononic System with Fifteen Dimensional Density Matrix. Journal of Physics: Conference Series, 766, Article ID: 012012.
https://doi.org/10.1088/1742-6596/766/1/012012
[30]  Dermez, R. and Özen, S. (2012) Maximum Quantum Entanglement and Linearity in the Second-Order Terms of the Lamb-Dicke Parameter. Physica Scripta, 85, Article ID: 055009.
https://doi.org/10.1088/0031-8949/85/05/055009

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413