全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using Bacterial Vectors for Probable Vaccines: From Molecular Mechanism to Cancer Therapy

DOI: 10.4236/wjv.2020.102003, PP. 33-42

Keywords: Bacterial Vector, Vaccine Delivery System, Cancer Vaccine, DNA Vaccine, Tumor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Anti-cancer therapies over the few decades, faced with many challenges. And bacterial vaccine vectors have shown a potential to be replaced as the cutting-edge technology for such aspects. Bacterial vaccine vectors with a suitable DNA can be a potential option for cancer treatment as a carrier for tumoricidal agents or bacterially directed Enzyme Prodrug treatment. Throughout this study, it is planned to have a review of the use of bacteria as vehicles by different ways for cancer treatment, detailing the systems of function and achievements at preclinical and clinical levels.

References

[1]  Williams, N.S., Bullstrode, C.J. and O’Connell, P.R. (2010) Bailey & Love’s Short Practice of Surgery. Annals of the Royal College of Surgeons of England, 92, 178.
[2]  Toussaint, B., Chauchet, X., Wang, Y., Polack, B. and Gouëllec, A. (2013) Live-Attenuated Bacteria as a Cancer Vaccine Vector. Expert Review of Vaccines, 12, 1139-1154.
https://doi.org/10.1586/14760584.2013.836914
[3]  Egeblad, M., Nakasone, E.S. and Werb, Z. (2010) Tumors as Organs: Complex Tissues That Interface with the Entire Organism. Developmental Cell, 18, 884-901.
https://doi.org/10.1016/j.devcel.2010.05.012
[4]  Vaupel, P., Kallinowski, F. and Okunieff, P. (1989) Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. Cancer Research, 49, 6449-6465.
[5]  Elliott, N.T. and Yuan, F. (2011) A Review of Three-Dimensional in Vitro Tissue Models for Drug Discovery and Transport Studies. Journal of Pharmaceutical Sciences, 100, 59-74.
https://doi.org/10.1002/jps.22257
[6]  Minchinton, A.I. and Tannock, I.F. (2006) Drug Penetration in Solid Tumours. Nature Reviews Cancer, 6, 583-592.
https://doi.org/10.1038/nrc1893
[7]  Melcher, A., Parato, K., Rooney, C.M. and Bell, J. (2011) Thunder and Lightning: Immunotherapy and Oncolytic Viruses Collide. Molecular Therapy, 19, 1008-1016.
https://doi.org/10.1038/mt.2011.65
[8]  Lichty, B.D., Breitbach, C.J., Stojdl, D.F. and Bell, J. (2014) Going Viral with Cancer Immunotherapy. Nature Reviews Cancer, 14, 559-567.
https://doi.org/10.1038/nrc3770
[9]  Roth, J.A. and Cristiano, R. (1997) Gene Therapy for Cancer: What Have We Done and Where Are We Going? Journal of the National Cancer Institute, 89, 21-39.
https://doi.org/10.1093/jnci/89.1.21
[10]  Kouraklis, G.P. (2003) Gene Therapy for Cancer: Current Status and Prospects. Digestive Diseases and Sciences, 48, 854-855.
https://doi.org/10.1023/A:1023026907848
[11]  Hall, S.S. and Rosen, F. (1997) A Commotion in the Blood: Life, Death and the Immune System. Nature, 388, 841.
https://doi.org/10.1038/42174
[12]  Cronin, M., Akin, A.R., Collins, S.A., Meganck, J., Kim, J.-B., Baban, C.K., van Sinderen, D., et al. (2012) High Resolution in Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting. PLoS ONE, 7, e30940.
https://doi.org/10.1371/journal.pone.0030940
[13]  Zhao, M., Yang, M., Li, X.-M., Jiang, P., Baranov, E., Li, S., Hoffman, R.M., et al. (2005) Tumor-Targeting Bacterial Therapy with Amino Acid Auxotrophs of GFP-Expressing Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 102, 755-760.
https://doi.org/10.1073/pnas.0408422102
[14]  Jaffee, E. (1999) Immunotherapy of Cancer. Annals of the New York Academy of Sciences, 886, 67-72.
https://doi.org/10.1111/j.1749-6632.1999.tb09401.x
[15]  Dietrich, G., Bubert, A., Gentschev, I., Sokolovic, Z., Simm, A., Catic, A., Goebel, W., et al. (1998) Delivery of Antigen-Encoding Plasmid DNA into the Cytosol of Macrophages by Attenuated Suicide Listeria monocytogenes. Nature Biotechnology, 16, 181-185.
https://doi.org/10.1038/nbt0298-181
[16]  van Pijkeren, J.P., Morrissey, D., Monk, I.R., Cronin, M., Rajendran, S., O’Sullivan, G.C., Tangney, M., et al. (2010) A Novel Listeria monocytogenes-Based DNA Delivery System for Cancer Gene Therapy. Human Gene Therapy, 21, 405-416.
https://doi.org/10.1089/hum.2009.022
[17]  Medina, E. and Guzmán, C. (2001) Use of Live Bacterial Vaccine Vectors for Antigen Delivery: Potential and Limitations. Vaccine, 19, 1573-1580.
https://doi.org/10.1016/S0264-410X(00)00354-6
[18]  Garmory, H.S., Leary, S.E., Griffin, K.F., Diane Williamson, E., Brown, K.A. and Titball, R. (2003) The Use of Live Attenuated Bacteria as a Delivery System for Heterologous Antigens. Journal of Drug Targeting, 11, 471-479.
https://doi.org/10.1080/10611860410001670008
[19]  Jiang, S.-N., Phan, T.X., Nam, T.-K., Nguyen, V.H., Kim, H.-S., Bom, H.-S., Min, J.-J., et al. (2010) Inhibition of Tumor Growth and Metastasis by a Combination of Escherichia coli-Mediated Cytolytic Therapy and Radiotherapy. Molecular Therapy, 18, 635-642.
https://doi.org/10.1038/mt.2009.295
[20]  Weibel, S., Stritzker, J., Eck, M., Goebel, W. and Szalay, A. (2008) Colonization of Experimental Murine Breast Tumours by Escherichia coli K-12 Significantly Alters the Tumour Microenvironment. Cellular Microbiology, 10, 1235-1248.
https://doi.org/10.1111/j.1462-5822.2008.01122.x
[21]  Carleton, H. (2010) Combating Evolving Pathogens Pathogenic Bacteria as Vaccine Vectors: Teaching Old Bugs New Tricks. Yale Journal of Biology and Medicine, 83, 217-222.
[22]  Toussaint, B., Chauchet, X., Wang, Y., Polack, B. and Gouëllec, A. (2013) Live-Attenuated Bacteria as a Cancer Vaccine Vector. Expert Review of Vaccines, 12, 1139-1154.
https://doi.org/10.1586/14760584.2013.836914
[23]  Radvanyi, L. (2004) Discovery and Immunologic Validation of New Antigens for Therapeutic Cancer Vaccines. International Archives of Allergy and Immunology, 133, 179-197.
https://doi.org/10.1159/000076625
[24]  Bolhassani, A. and Zahedifard, F. (2012) Therapeutic Live Vaccines as a Potential Anticancer Strategy. International Journal of Cancer, 131, 1733-1743.
https://doi.org/10.1002/ijc.27640
[25]  Attridge, S.R., Davies, R. and LaBrooy, J. (1997) Oral Delivery of Foreign Antigens by Attenuated Salmonella: Consequences of Prior Exposure to the Vector Strain. Vaccine, 15, 155-162.
https://doi.org/10.1016/S0264-410X(96)00158-2
[26]  Coley, W. (1894) Treatment of Inoperable Malignant Tumors with the Toxines of Erysipelas and the Bacillus Prodigiosus. The American Journal of the Medical Sciences, 108, 50-66.
https://doi.org/10.1097/00000441-189407000-00006
[27]  Tsung, K. and Norton, J.A. (2006) Lessons from Coley’s Toxin. Surgical Oncology, 15, 25-28.
https://doi.org/10.1016/j.suronc.2006.05.002
[28]  Patyar, S., Prakash, A. and Medhi, B. (2012) Bacteria as a Therapeutic Approach in Cancer Therapy. In: Bacteria and Cancer, Springer, Berlin, 185-208.
https://doi.org/10.1007/978-94-007-2585-0_8
[29]  Saltzman, D.A., Heise, C.P., Hasz, D.E., Zebede, M., Kelly, S.M. and Curtiss III, R. (1996) Attenuated Salmonella Typhimurium Containing Interleukin-2 Decreases MC-38 Hepatic Metastases: A Novel Anti-Tumor Agent. Cancer Biotherapy and Radiopharmaceuticals, 11, 145-153.
https://doi.org/10.1089/cbr.1996.11.145
[30]  Saltzman, D.A., Katsanis, E., Heise, C.P., Hasz, D.E., Kelly, S.M. and Curtiss III, R. (1997) Patterns of Hepatic and Splenic Colonization by an Attenuated Strain of Salmonella Typhimurium Containing the Gene for Human Interleukin-2: A Novel Anti-Tumor Agent. Cancer Biotherapy and Radiopharmaceuticals, 12, 37-45.
https://doi.org/10.1089/cbr.1997.12.37
[31]  Yuhua, L., Kunyuan, G., Hui, C., Yongmei, X., Chaoyang, S., Xun, T. and Daming, R. (2001) Oral Cytokine Gene Therapy against Murine Tumor Using Attenuated Salmonella Typhimurium. International Journal of Cancer, 94, 438-443.
https://doi.org/10.1002/ijc.1489
[32]  Li, X., Fu, G.-F., Fan, Y.-R., Liu, W.-H., Liu, X.-J., Wang, J.-J. and Xu, G.-X. (2003) Bifidobacterium adolescentis as a Delivery System of Endostatin for Cancer Gene Therapy: Selective Inhibitor of Angiogenesis and Hypoxic Tumor Growth. Cancer Gene Therapy, 10, 105-111.
https://doi.org/10.1038/sj.cgt.7700530
[33]  Yasui, H. and Ohwaki, M. (1991) Enhancement of Immune Response in Peyer’s Patch Cells Cultured with Bifidobacterium Breve. Journal of Dairy Science, 74, 1187-1195.
https://doi.org/10.3168/jds.S0022-0302(91)78272-6
[34]  Reddy, B.S. and Rivenson, A. (1993) Inhibitory Effect of Bifidobacterium Longum on Colon, Mammary, and Liver Carcinogenesis Induced by 2-Amino-3-methyli- midazo[4][5-f]quinoline, a Food Mutagen. Cancer Research, 53, 3914-3918.
[35]  Brüggemann, H. and Gottschalk, G. (2009) Clostridia: Molecular Biology in the Post-Genomic Era. Caister Academic Press.
http://hdl.handle.net/11858/00-001M-0000-000E-C121-0
[36]  Theys, J., Landuyt, W., Nuyts, S., Van Mellaert, L., Van Oosterom, A., Lambin, P. and Anné, J. (2001) Specific Targeting of Cytosine Deaminase to Solid Tumors by Engineered Clostridium acetobutylicum. Cancer Gene Therapy, 8, 294-297.
https://doi.org/10.1038/sj.cgt.7700303
[37]  Liu, S., Minton, N., Giaccia, A. and Brown, J. (2002) Anticancer Efficacy of Systemically Delivered Anaerobic Bacteria as Gene Therapy Vectors Targeting Tumor Hypoxia/Necrosis. Gene Therapy, 9, 291-296.
https://doi.org/10.1038/sj.gt.3301659
[38]  Luo, X., Li, Z., Shen, S., Runyan, J., Bermudes, D. and Zheng, L. (2001) Genetically Armed Salmonella Typhimurium Delivered Therapeutic Gene and Inhibited Tumor Growth in Preclinical Models. Proceedings of Annual Meeting at American Association for Cancer Research, 42, 3693.
[39]  Pawelek, J.M., Low, K.B. and Bermudes, D. (1997) Tumor-Targeted Salmonella as a Novel Anticancer Vector. Cancer Research, 57, 4537-4544.
[40]  Fujimori, M., Amano, J. and Taniguchi, S. (2002) The Genus Bifidobacterium for Cancer Gene Therapy. Current Opinion in Drug Discovery & Development, 5, 200-203.
[41]  Cheng, C., Lu, Y., Chuang, K., Hung, W., Shiea, J., Su, Y., Cheng, T., et al. (2008) Tumor-Targeting Prodrug-Activating Bacteria for Cancer Therapy. Cancer Gene Therapy, 15, 393-401.
https://doi.org/10.1038/cgt.2008.10
[42]  Cheever, M.A., Allison, J.P., Ferris, A.S., Finn, O.J., Hastings, B.M., Hecht, T.T. and Weiner, L. (2009) The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. Clinical Cancer Research, 15, 5323-5337.
https://doi.org/10.1158/1078-0432.CCR-09-0737
[43]  Kufe, D.W., Hait, W., Holland, J.F., Frei, E. and Pollock, R.E. (2010) Holland-Frei Cancer Medicine 8 (Vol. 8). PMPH-USA.
[44]  Wood, L.M. and Paterson, Y. (2014) Attenuated Listeria monocytogenes: A Powerful and Versatile Vector for the Future of Tumor Immunotherapy. Frontiers in Cellular and Infection Microbiology, 4, 51.
https://doi.org/10.3389/fcimb.2014.00051
[45]  Dalpke, A., Zimmermann, S. and Heeg, K. (2001) CpG-Oligonucleotides in Vaccination: Signaling and Mechanisms of Action. Immunobiology, 204, 667-676.
https://doi.org/10.1078/0171-2985-00106
[46]  Krieg, A.M., Yi, A.-K., Matson, S., Waldschmidt, T.J., Bishop, G.A., Teasdale, R., Klinman, D., et al. (1995) CpG Motifs in Bacterial DNA Trigger Direct B-Cell Activation. Nature, 374, 546.
https://doi.org/10.1038/374546a0
[47]  Yanai, H., Ban, T. and Taniguchi, T. (2011) Essential Role of High-Mobility Group Box Proteins in Nucleic Acid-Mediated Innate Immune Responses. Journal of Internal Medicine, 270, 301-308.
https://doi.org/10.1111/j.1365-2796.2011.02433.x
[48]  Schlom, J., Hodge, J.W., Palena, C., Tsang, K.-Y., Jochems, C., Greiner, J.W., Gulley, J.L., et al. (2014) Therapeutic Cancer Vaccines. In: Advances in Cancer Research, Vol. 121, Elsevier, Amsterdam, 67-124.
https://doi.org/10.1016/B978-0-12-800249-0.00002-0
[49]  Kaufman, H.L. (2012) Vaccines for Melanoma and Renal Cell Carcinoma. Seminars in Oncology, 39, 263-275.
https://doi.org/10.1053/j.seminoncol.2012.02.011
[50]  Singh, R. and Paterson, Y. (2006) Listeria monocytogenes as a Vector for Tumor-Associated Antigens for Cancer Immunotherapy. Expert Review of Vaccines, 5, 541-552.
https://doi.org/10.1586/14760584.5.4.541
[51]  Haux, J. (2001) Infection and Cancer. The Lancet, 358, 155-156.
https://doi.org/10.1016/S0140-6736(01)05369-7
[52]  Liu, M.A. and Ulmer, J. (2005) Human Clinical Trials of Plasmid DNA Vaccines. Advances in Genetics, 55, 25-40.
https://doi.org/10.1016/S0065-2660(05)55002-8
[53]  Sato, Y., Roman, M., Tighe, H., Lee, D., Corr, M., Nguyen, M.-D., Raz, E., et al. (1996) Immunostimulatory DNA Sequences Necessary for Effective Intradermal Gene Immunization. Science, 273, 352-354.
https://doi.org/10.1126/science.273.5273.352
[54]  Lee, S.-H., Danishmalik, S.N., Sin, J.-I., et al. (2015) DNA Vaccines, Electroporation and Their Applications in Cancer Treatment. Human Vaccines & Immunotherapeutics, 11, 1889-1900.
https://doi.org/10.1080/21645515.2015.1035502
[55]  Cronin, M., Stanton, R., Francis, K. and Tangney, M. (2012) Bacterial Vectors for Imaging and Cancer Gene Therapy: A Review. Cancer Gene Therapy, 19, 731-740.
https://doi.org/10.1038/cgt.2012.59
[56]  Dietzel, F. (1983) Basic Principles in Hyperthermic Tumor Therapy. In: Vascular Perfusion in Cancer Therapy, Springer, Berlin, 177-190.
https://doi.org/10.1007/978-3-642-82025-0_31
[57]  Dietzel, F. and Gericke, D. (1977) Intensification of the Oncolysis by Clostridia by Means of Radio-Frequency Hyperthermy in Experiments on Animals—Dependence on Dosage and on Intervals (Author’s Transl.) Strahlentherapie, 153, 263-266.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413