全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

n+-p-p+ Silicon Solar Cell Base Optimum Thickness Determination under Magnetic Field

DOI: 10.4236/jemaa.2020.127009, PP. 103-113

Keywords: Silicon Solar Cell, Magnetotransport, Surface Recombination Velocity, Base Thickness

Full-Text   Cite this paper   Add to My Lib

Abstract:

Base optimum thickness is determined for a front illuminated bifacial silicon solar cell n+-p-p+ under magnetic field. From the magneto transport equation relative to excess minority carriers in the base, with specific boundary conditions, the photocurrent is obtained. From this result the expressions of the carrier’s recombination velocity at the back surface are deducted. These new expressions of recombination velocity are plotted according to the depth of the base, to deduce the optimum thickness, which will allow the production, of a high short-circuit photocurrent. Calibration relationships of optimum thickness versus magnetic field were presented according to study ranges. It is found that, applied magnetic field imposes a weak thickness material for solar cell manufacturing leading to high short-circuit current.

References

[1]  Reynolds, J.H. and Meulenberg, A. (1974) Measurement of Diffusion Length in Solar Cells. Journal of Applied Physics, 45, 2582-2592.
https://doi.org/10.1063/1.1663633
[2]  Oualid, J., Bonfils, M., Crest, J.P., Mathian, G., Amzil, H., Dugas, J., Zehaf, M. and Martinuzzi, S. (1982) Photocurrent and Diffusion Lengths at the Vicinity of Grain Boundaries (g.b.) in N and P-Type Polysilicon. Evaluation of the g.b. Recombination Velocity. Revue de Physique Appliquée, 17, 119-124.
https://doi.org/10.1051/rphysap:01982001703011900
[3]  Rosling, M., Bleichner, H., Mundqvist, M. and Nordlander, E. (1992) A Novel Technique for the Simultaneous Measurement of Ambipolar Carrier Lifetime and Diffusion Coefficient in Silicon. Solid State Electronics, 35, 1223-1227.
https://doi.org/10.1016/0038-1101(92)90153-4
[4]  Bester, Y., Ritter, D., Bahia, G., Cohen, S. and Sparkling, J. (1995) Method Measurement of the Minority Carrier Mobility in the Base of Heterojunction Bipolar Transistor Using a Magneto transport Method. Applied Physics Letters, 67, 1883-1884.
https://doi.org/10.1063/1.114364
[5]  Rugider, M., Puzzer, T., Schäffer, E., Warta, W., Glunz, S.W., Würfel, P. and Trupke, T. (2007) Diffusion Lengths of Silicon Solar Cells from Luminescence Images. Journal of Applied Physics, 101, Article ID: 123110.
[6]  Diao, A., Thiam, N., Zoungrana, M., Ndiaye, M., Sahin, G. and Sissoko, G. (2014) Diffusion Coefficient in Silicon Solar Cell with Applied Magnetic Field and under Frequency: Electric Equivalent Circuits. World Journal of Condensed Matter Physics, 4, 1-9.
https://doi.org/10.4236/wjcmp.2014.42013
[7]  Luque, A., Ruiz, J.M., Cuevas, A., Eguren, J. and Agost, M.G. (1997) Double Side Solar Cells to Improve Static Concentrator. Proceeding of the European Photovoltaic Solar Energy Conference, Luxembourg, 269-277.
https://doi.org/10.1007/978-94-009-9840-7_25
[8]  Yadav, P., Pandey, K., Tripathi, B., Mauli Kumar, C., Srivatava, S.K., Singh, P.K. and Kumar, M. (2015) An Effective Way to Analyze the Performance Limiting Parameters of a Poly-Crystalline Silicon Solar Cell Fabricated in the Production Line. Solar Energy, 122, 1-10.
https://doi.org/10.1016/j.solener.2015.08.005
[9]  Diao, A., Wade, M., Thiame, M. and Sissoko, G. (2017) Bifacial Silicon Solar Cell Steady Photoconductivity under Constant Magnetic Field and Junction Recombination Velocity Effects. Journal of Modern Physics, 8, 2200-2208.
https://doi.org/10.4236/jmp.2017.814135
[10]  Wise, J.F. (1970) Vertical Junction Hardened Solar Cell. US Patent, 3, 690-953.
[11]  Gueye, M., Diallo, H.L., Moustapha, A.K.M., Traore, Y., Diatta, I. and Sissoko, G. (2018) Ac Recombination Velocity in a Lamella Silicon Solar Cell. World Journal of Condensed Matter Physics, 8, 185-196.
https://doi.org/10.4236/wjcmp.2018.84013
[12]  Ngom, M.I., Thiam, A., Sahin, G., El Moujtaba, M.A.O., Faye, K., Diouf, M.S. and Sissoko, G. (2015) Influence of Magnetic Field on the Capacitance of a Vertical Junction Parallel Solar Cell in Static Regime, under Multispectral Illumination. International Journal of Pure & Applied Sciences & Technology, 31, 65-75.
[13]  Madougou, S., Made, F., Boukary, M.S. and Sissoko, G. (2007) Recombination Parameters Determination by Using Internal Quantum Efficiency Data of Bifacial Silicon Solar Cells. Advanced Materials Research, 18-19, 313-324.
https://doi.org/10.4028/www.scientific.net/AMR.18-19.313
[14]  Zouma, B., Maiga, A. S., Dieng, M., Zougmore, F. and Sissoko, G. (2009) 3D Approach of Spectral Response for a Bifacial Silicon Solar Cell under a Constant Magnetic Field. Global Journal of Pure and Applied Sciences, 15, 117-124.
https://doi.org/10.4314/gjpas.v15i1.44908
[15]  Zoungrana, M., Thiame, M., Dioum, A., Raguilnaba, S. and Sissoko, G. (2007) 3D Study of a Bifacial Silicon Solar Cell under Intense Light Concentration and under External Constant Magnetic Field: Recombination and Electrical Parameters Determination. Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milano, 3-7 September 2007, 447-453.
[16]  Kumar, S., Singh, P.K. and Chilana, G.S. (2009) Study of Silicon Solar Cell at Different Intensities of Illumination and Wavelengths Using Impedance Spectroscopy. Solar Energy Materials and Solar Cells, 93, 1881-1884.
https://doi.org/10.1016/j.solmat.2009.07.002
[17]  Diallo, M.M., Tamba, S., Seibou, B., Cheikh, M.L.O., Diatta, I., Ndiaye, E.H., Traore, Y., Sarr, C.T. and Sissoko, G. (2017) Impact of Irradiation on the Surface Recombination Velocity of a Back Side Monochromatic Illuminated Bifacial Silicon Solar Cell under Frequency Modulation. Journal of Scientific and Engineering Research, 4, 29-40.
[18]  Selma, M.S., Diatta, I., Traore, Y., Diouf, M.S., Habiboulahh, L., Wade, M. and Sissoko, G. (2018) Diffusion Capacitance in a Silicon Solar Cell under Frequency Modulated Illumination: Magnetic Field and Temperature Effects. Journal of Scientific and Engineering Research, 5, 317-324.
http://www.jsaer.com
[19]  Diouf, S., Ndiaye, M., Thiam, N., Traore, Y., Lamine Ba, M., Diatta, I., Diouf, M.S., et al. (2019) Influence of Temperature and Frequency on Minority Carrier Diffusion Coefficient in a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 11, 355-361.
https://doi.org/10.4236/epe.2019.1110023
[20]  Jain, S.C. (1983) The Effective Lifetime in Semicrystalline Silicon. Solar Cells, 9, 345-352.
https://doi.org/10.1016/0379-6787(83)90028-5
[21]  Jung, T.W., Lindholm, F.A. and Neugroschel, A. (1984) Unifying View of Transient Responses for Determining Lifetime and Surface Recombination Velocity in Silicon Diodes and Back-Surface-Field Solar Cells, with Application to Experimental Short-Circuit-Current Decay. IEEE Transactions on Electron Devices, 31, 588-595.
https://doi.org/10.1109/T-ED.1984.21573
[22]  Zondervan, A., Verhoef, L.A. and Lindholm, F.A. (1988) Measurement Circuits for Silicon-Diode and Solar Cells Lifetime and Surface Recombination Velocity by Electrical Short-Circuit Current Delay. IEEE Transactions on Electron Devices, 35, 85-88.
https://doi.org/10.1109/16.2419
[23]  Gupta, S., Ahmed, F. and Garg, S. (1988) A Method for the Determination of the Material Parameters τ, D, Lo, S and α from Measured AC. Short-Circuit Photocurrent. Solar Cells, 25, 61-72.
https://doi.org/10.1016/0379-6787(88)90058-0
[24]  Sissoko, G., Nanéma, E., Corréa, A., Biteye, P.M., Adj, M. and Ndiaye, A.L. (1998) Silicon Solar Cell Recombination Parameters Determination Using the Illuminated I-V Characteristic. Renewable Energy, 3, 1848-1851.
[25]  Kosso, A.M.M., Thiame, M., Traore, Y., et al. (2018) 3D Study of a Silicon Solar Cell under Constant Monochromatic Illumination: Influence of Both, Temperature and Magnetic Field. Journal of Scientific and Engineering Research, 5, 259-269.
[26]  Diop, M.S., Ba, H.Y., Thiam, N., et al. (2019) Surface Recombination Concept as Applied to Determinate Silicon Solar Cell Base Optimum Thickness with Doping Level Effect. World Journal of Condensed Matter Physics, 9, 102-111.
https://doi.org/10.4236/wjcmp.2019.94008
[27]  Ba, M.L., Diallo, H.L., Ba, H.Y., Traore, Y., Diatta, I., Diouf, M.S., et al. (2018) Irradiation Energy Effect on a Silicon Solar Cell: Maximum Power Point Determination. Journal of Modern Physics, 9, 2141-2155.
https://doi.org/10.4236/jmp.2018.912135
[28]  Mane, R., Ly, I., Wade, M., Datta, I., Douf, M.S., Traore, Y., Ndiaye, M., Tamba, S. and Sissoko, G. (2017) Minority Carrier Diffusion Coefficient D*(B, T): Study in Temperature on a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 9, 1-10.
http://www.scirp.org/journal/epe
https://doi.org/10.4236/epe.2017.91001
[29]  Mohamed, N.M.M.O., et al. (2019) Influence of Both Magnetic Field and Temperature on Silicon Solar Cell Base Optimum Thickness Determination. Journal of Modern Physics, 10, 1596-1605.
https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1013105
[30]  Ely, M.M., et al. (2020) Surface Recombination Velocity Concept as Applied to Determinate Back Surface Illuminated Silicon Solar Cell Base Optimum Thickness, under Temperature and External Magnetic Field Effects. Journal of Scientific and Engineering Research, 7, 69-77.
http://www.jsaer.com
[31]  Vardanyan, R.R., Kerst, U., Wawer, P., Nell, M.E. and Wagemann, H.G. (1998) Method for Measurement of All Recombination Parameters in the Base Region of Solar Cells. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 191-193.
[32]  Mbodji, S., Zoungrana, M., Zerbo, I., Dieng, B. and Sissoko, G. (2015) Modelling Study of Magnetic Field’s Effects on Solar Cell’s Transient Decay. World Journal of Condensed Matter Physics, 5, 284-293.
https://doi.org/10.4236/wjcmp.2015.54029
[33]  Furlan, J. and Amon, S. (1985) Approximation of the Carrier Generation Rate in Illuminated Silicon. Solid-State Electronics, 28, 1241-1243.
https://doi.org/10.1016/0038-1101(85)90048-6
[34]  Diouf, M.S., et al. (2016) Study of the Series Resistance of a Solar Cell Silicon under Magnetic Field from of Junction Surface Recombination Velocity of Minority Charge Carriers at the Junction Limiting the Open Circuit (Sfoc). Journal of Scientific and Engineering Research, 3, 289-297.
http://www.jsaer.com
[35]  Sissoko, G., Sivoththanam, S., Rodot, M. and Mialhe, P. (1992) Constant Illumination-Induced Open Circuit Voltage Decay (CIOCVD) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Montreux, 352-354.
[36]  Diallo, H.L., Maiga, S.A., Wereme, A. and Sissoko, G. (2008) New Approach of Both Junction and Back Surface Recombination Velocities in a 3D Modelling Study of a Polycrystalline Silicon Solar Cell. The European Physical Journal Applied Physics, 42, 203-211.
https://doi.org/10.1051/epjap:2008085
[37]  Rose, B.H. and Weaver, H.T. (1983) Determination of Effective Surface Recombination Velocity and Minority-Carrier Lifetime in High-Efficiency Si Solar Cells. Journal of Applied Physics, 54, 238-247.
https://doi.org/10.1063/1.331693
[38]  Joardar, K., Dondero, R.C. and Schroda, D.K. (1989) Critical Analysis of the Small-Signal Voltage-Decay Technique for Minority-Carrier Lifetime Measurement in Solar Cells. Solid State Electronics, 32, 479-483.
https://doi.org/10.1016/0038-1101(89)90030-0
[39]  Sissoko, G., Museruka, C., Corréa, A., Gaye, I. and Ndiaye, A.L. (1996) Light Spectral Effect on Recombination Parameters of Silicon Solar Cell. World Renewable Energy Congress, Pergamon, Part III, 1487-1490.
[40]  Ba, M.L., Thiam, N., Thiame, M., Traore, Y., Diop, M.S., Ba, M., Sarr, C.T., Wade, M. and Sissoko, G. (2019) Base Thickness Optimization of a (n+-p-p+) Silicon Solar Cell in Static Mode under Irradiation of Charged Particles. Journal of Electromagnetic Analysis and Applications, 11, 173-185.
https://doi.org/10.4236/jemaa.2019.1110012
[41]  Diop, G., et al. (2019) Base Thickness Optimization of a Vertical Series Junction Silicon Solar Cell under Magnetic Field by the Concept of Back Surface Recombination Velocity of Minority Carrier. ARPN Journal of Engineering and Applied Sciences, 14, 4078-4085.
[42]  Faye, D., Gueye, S., Ndiaye, M., et al. (2020) Lamella Silicon Solar Cell under Both Temperature and Magnetic Field: Width Optimum Determination. Journal of Electromagnetic Analysis and Applications, 12, 43-55.
https://www.scirp.org/journal/jemaa
https://doi.org/10.4236/jemaa.2020.124005
[43]  Dia, O., El Moujtaba, M.A.O., Gueye, S., et al. (2020) Optimum Thickness Determination Technique as Applied to a Series Vertical Junction Silicon Solar Cell under Polychromatic Illumination: Effect of Irradiation. International Journal of Advanced Research, 8, 616-626.
http://www.journalijar.com
https://doi.org/10.21474/IJAR01/10967
[44]  Navruz, T.S. and Saritas, M. (2012) Determination of the Optimum Material Parameters for Intermediate Band Solar Cells Diffusion Model. Progress in Photovoltaics Research and Applications, 22, 593-602.
https://doi.org/10.1002/pip.2283
[45]  Dede, M.M.S., Ndiaye, M., Gueye, S., et al. (2020) Optimum Base Thickness Determination Technique as Applied to n/p/p+ Silicon Solar Cell under Short Wavelengths Monochromatic Illumination. International Journal of Innovation and Applied Studies, 29, 576-586.
http://www.ijias.issr-journals.org

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133