全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pharmacochemical Aspects of the Evolution from Erythromycin to Neomacrolides, Ketolides and Neoketolides

DOI: 10.4236/ojmc.2020.103005, PP. 57-112

Keywords: Pharmacochemistry, Erythromycin, Neomacrolide, Ketolide, Neoketolide, Structure-Activity Relationships

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antibiotic macrolides are experiencing renewed interest in anti-infective therapy since the advent of ketolides. This therapeutic class was introduced in order to broaden the narrow antibacterial spectrum of macrolides and to cope with the emergence of germs resistant to Erythromycin A and its hemisynthetic derivatives or neomacrolides (Clarithromycin, Roxithromycin, Azithromycin, Dirithromycin). From a pharmacochemical point of view, ketolides were first of all obtained by operating chemical modulations on Erythromycin A to obtain the neomacrolides, then, by replacing the neutral sugar (L-cladinose) in C3 by a ketone function coupled with the creation of an oxazolidinone like heterocycle in C11 and C12 in place of the hydroxyls present in these positions (Telithromycin, Cethromycin, Solithromycin). These modulations have enabled the improvement of the chemical stability of ketolides in gastric acid medium and increase their affinity for the ribosomal target, hence the broadening of their spectrum of action towards Gram positive germs including strains resistant to other macrolides and to neomacrolides. Therefore, the objective of this systematic review is to report the various pharmacochemical aspects undertaken since 1952 in the macrolide series based on the structure of Erythromycin A. These aspects will focus on the pharmacomodulations that have led, year after year, to the optimization of stability, the improvement of the pharmacodynamic and pharmacokinetic profile and that have allowed the development of neomacrolides, ketolides and neoketolides, which are today essential in the management of severe bronchopulmonary infections.

References

[1]  Bryskier, A. (2005) Antimicrobial Agents: Antibacterials and Antifungals. ASM Press, Washington.
https://doi.org/10.1128/9781555815929
[2]  Schönfeld, W. and Kirst, H.A. (2002) Macrolide Antibiotics. Springer Science & Business Media, Berlin.
https://doi.org/10.1007/978-3-0348-8105-0
[3]  Sabath, L.D., Laverdiere, M., Wheeler, N., Blazevic, D. and Wilkinson, B. (1977) A New Type of Penicillin Resistance of Staphylococcus Aureus. The Lancet, 309, 443-447.
https://doi.org/10.1016/S0140-6736(77)91941-9
[4]  Zuckerman, J.M. (2004) Macrolides and Ketolides: Azithromycin, Clarithromycin, Telithromycin. Infectious Disease Clinics of North America, 18, 621-649.
https://doi.org/10.1016/j.idc.2004.04.010
[5]  Anderson, R., Groundwater, P.W., Todd, A. and Worsley, A. (2012) Antibacterial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications. John Wiley & Sons, Ltd., Hoboken.
https://doi.org/10.1002/9781118325421
[6]  Gaudy, C., Buxeraud, J. and Mereghetti, L. (2005) Antibiotiques (Pharmacologie et Thérapeutique). Collection Pharma.
[7]  Labro, M.T. (2006) Immunomodulation médiée par les agents antibactériens. Réanimation, 15, 259-264.
https://doi.org/10.1016/j.reaurg.2006.06.004
[8]  Langelot, M., Cellerin, L. and Germaud, P. (2006) Effets anti-inflammatoires des macrolides: Applications en Pneumologie. Revue de Pneumologie Clinique, 62, 215-222.
https://doi.org/10.1016/S0761-8417(06)75444-X
[9]  Canu, A. and Leclercq, R. (2002) Les macrolides: une diversité de mécanismes de résistance. Medecine et maladies infectieuses, 32, 32-44.
https://doi.org/10.1016/S0399-077X(02)80005-1
[10]  Leclercq, R. (2002) Mechanisms of Resistance to Macrolides and Lincosamides: Nature of the Resistance Elements and Their Clinical Implications. Clinical Infectious Diseases, 34, 482-492.
https://doi.org/10.1086/324626
[11]  Driggers, E.M., Hale, S.P., Lee, J. and Terrett, N.K. (2008) The Exploration of Macrocycles for Drug Discovery—An Underexploited Structural Class. Nature Reviews Drug Discovery, 7, 608-624.
https://doi.org/10.1038/nrd2590
[12]  Mallinson, J. and Collins, I. (2012) Macrocycles in New Drug Discovery. Future Medicinal Chemistry, 4, 1409-1438.
https://doi.org/10.4155/fmc.12.93
[13]  Marsault, E. and Peterson, M.L. (2011) Macrocycles are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. Journal of Medicinal Chemistry, 54, 1961-2004.
https://doi.org/10.1021/jm1012374
[14]  Adam, Y., Boudet-Dalbin, R., Brion, J.D., Buxeraud, J. and Castel, J. (1992) Traité de chimie thérapeutique 2: Médicaments antibiotiques. Editions: Médicales Internationales.
[15]  Zhang, H., Wang, Y., Wu, J., Skalina, K. and Pfeifer, B.A. (2010) Complete Biosynthesis of Erythromycin A and Designed Analogs Using E. coli as a Heterologous Host. Chemistry & Biology, 17, 1232-1240.
https://doi.org/10.1016/j.chembiol.2010.09.013
[16]  Egan, R.S., Perun, T.J., Martin, J.R. and Mitscher, L.A. (1973) The Conformation of Erythronolide, the 14-Membered Aglycone Ring of the Erythromycin Antibiotics. Tetrahedron, 29, 2525-2538.
https://doi.org/10.1016/0040-4020(73)80169-3
[17]  Everett, J.R. and Tyler, J.W. (1987) The Conformational Analysis of Erythromycin A. Journal of the Chemical Society, Perkin Transactions, 2, 1659-1667.
https://doi.org/10.1039/p29870001659
[18]  Masamune, S., Bates, G.S. and Corcoran, J.W. (1977) Macrolides. Recent Progress in Chemistry and Biochemistry. Angewandte Chemie International Edition in English, 16, 585-607.
https://doi.org/10.1002/anie.197705851
[19]  Xiong, L., Shah, S., Mauvais, P. and Mankin, A.S. (2002) A Ketolide Resistance Mutation in Domain II of 23S rRNA Reveals the Proximity of Hairpin 35 to the Peptidyl Transferase Centre. Molecular Microbiology, 31, 633-639.
https://doi.org/10.1046/j.1365-2958.1999.01203.x
[20]  Hansen, L.H., Mauvais, P. and Douthwaite, S. (2002) The Macrolide-Ketolide Antibiotic Binding Site is Formed by Structures in Domains II and V of 23S Ribosomal RNA. Molecular Microbiology, 31, 623-631.
https://doi.org/10.1046/j.1365-2958.1999.01202.x
[21]  Weisblum B. (1995) Erythromycin Resistance by Ribosome Modification. Antimicrobial Agents and Chemotherapy, 39, 577-585.
https://doi.org/10.1128/AAC.39.3.577
[22]  Menninger, J.R. and Otto, D.P. (1982) Erythromycin, Carbomycin, and Spiramycin Inhibit Protein Synthesis by Stimulating the Dissociation of Peptidyl-tRNA from Ribosomes. Antimicrobial Agents and Chemotherapy, 21, 811-818.
https://doi.org/10.1128/AAC.21.5.811
[23]  Vázquez-Laslop, N. and Mankin, A.S. (2018) How Macrolide Antibiotics Work. Trends in Biochemical Sciences, 43, 668-684.
https://doi.org/10.1016/j.tibs.2018.06.011
[24]  Chittum, H.S. and Champney, W.S. (1995) Erythromycin Inhibits the Assembly of the Large Ribosomal Subunit in Growing Escherichia coli Cells. Current Microbiology, 30, 273-279.
https://doi.org/10.1007/BF00295501
[25]  Kataja, J., Seppälä, H., Skurnik, M., Sarkkinen, H. and Huovinen, P. (1998) Different Erythromycin Resistance Mechanisms in Group C and Group G Streptococci. Antimicrobial Agents and Chemotherapy, 42, 1493-1494.
https://doi.org/10.1128/AAC.42.6.1493
[26]  Sutcliffe, J.A. and Leclercq, R. (2002) Mechanisms of Resistance to Macrolides, Lincosamides, and Ketolides. Mechanisms of resistance to macrolides, lincosamides, and ketolides. In: Schönfeld, W. and Kirst, H.A., Eds., Macrolide Antibiotics. Milestones in Drug Therapy MDT, Birkhäuser, Basel, 281-317.
https://doi.org/10.1007/978-3-0348-8105-0_17
[27]  Lina, G., Quaglia, A., Reverdy, M.E., Leclercq, R., Vandenesch, F. and Etienne, J. (1999) Distribution of Genes Encoding Resistance to Macrolides, Lincosamides, and Streptogramins among Staphylococci. Antimicrobial Agents and Chemotherapy, 43, 1062-1066.
https://doi.org/10.1128/AAC.43.5.1062
[28]  Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J. and Seppala, H. (1999) Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants. Antimicrobial Agents and Chemotherapy, 43, 2823-2830.
https://doi.org/10.1128/AAC.43.12.2823
[29]  Kirst H.A. (1993) Semi-Synthetic Derivatives of Erythromycin. Progress in Medicinal Chemistry, 30, 57-88.
https://doi.org/10.1016/S0079-6468(08)70375-8
[30]  Kurath, P., Jones, P.H., Egan, R.S. and Perun, T.J. (1971) Acid Degradation of Erythromycin A and Erythromycin B. Experientia, 27, 362.
https://doi.org/10.1007/BF02137246
[31]  Itoh, Z., Nakaya, M., Suzuki, T., Arai, H. and Wakabayashi, K. (1984) Erythromycin Mimics Exogenous Motilin in Gastrointestinal Contractile Activity in the Dog. The American Journal of Physiology, 247, G688-G694.
https://doi.org/10.1152/ajpgi.1984.247.6.G688
[32]  Bensoussan, C., Delaforge, M. and Mansuy, D. (1995) Particular Ability of Cytochromes P450 3A to Form Inhibitory P450-Iron-Metabolite Complexes Upon Metabolic Oxidation of Aminodrugs. Biochemical Pharmacology, 49, 591-602.
https://doi.org/10.1016/0006-2952(94)00477-4
[33]  Shafiee, A. and Hutchinson, C.R. (1988) Purification and Reconstitution of the Electron Transport Components for 6-Deoxyerythronolide B Hydroxylase, a Cytochrome P-450 Enzyme of Macrolide Antibiotic (Erythromycin) Biosynthesis. Journal of Bacteriology, 170, 1548-1553.
https://doi.org/10.1128/JB.170.4.1548-1553.1988
[34]  Weber, J.M., Leung, J.O., Swanson, S.J., Idler, K.B. and McAlpine, J.B. (1991) An Erythromycin Derivative Produced by Targeted Gene Disruption in Saccharopolyspora Erythraea. Science, 252, 114-117.
https://doi.org/10.1126/science.2011746
[35]  ōmura, S., Ed. (2002) Macrolide Antibiotics: Chemistry, Biology, and Practice. Elsevier.
[36]  Douthwaite, S. (2001) Structure-Activity Relationships of Ketolides vs. Macrolides. Clinical Microbiology and Infection, 7, 11-17.
https://doi.org/10.1046/j.1469-0691.2001.0070s3011.x
[37]  Mabe, S., Eller, J. and Champney, W. (2004) Structure-Activity Relationships for Three Macrolide Antibiotics in Haemophilus influenzae. Current Microbiology, 49, 248-254.
https://doi.org/10.1007/s00284-004-4312-9
[38]  Jones, P.H., Perun, T.J., Rowley, E.K. and Baker, E.J. (1972) Chemical Modifications of Erythromycin Antibiotics. 3. Synthesis of 4” and 11 Esters of Erythromycin A and B. Journal of Medicinal Chemistry, 15, 631-634.
https://doi.org/10.1021/jm00276a017
[39]  Asaka, T., Manaka, A. and Sugiyama, H. (2003) Recent Developments in Macrolide Antimicrobial Research. Current Topics in Medicinal Chemistry, 3, 961-989.
https://doi.org/10.2174/1568026033452140
[40]  Kirst, H.A. (1998) Recent Developments with Macrolide Antibiotics. Expert Opinion on Therapeutic Patents, 8, 111-120.
https://doi.org/10.1517/13543776.8.2.111
[41]  Van Bambeke, F., Verhaegen, J., Tyteca, D., Auckenthaler, R. and Tulkens, P.M. (2001) Erythromycin and Current Neomacrolides: Clinical Uses and Perspectives. Médecine et Hygiène, 59, 2316-2323.
[42]  Tardrew, P.L., Mao, J.C. and Kenney, D. (1969) Antibacterial Activity of 2’-Esters of Erythromycin. Applied Microbiology, 18, 159-165.
https://doi.org/10.1128/AEM.18.2.159-165.1969
[43]  Welling P.G. (1979) The Esters of Erythromycin. The Journal of Antimicrobial Chemotherapy, 5, 633-634.
https://doi.org/10.1093/jac/5.6.633
[44]  Booth, R.E., Dale, J.K. and Murray, M.F. (1958) Erythromycin Esters. US Patent No. 2862921.
[45]  Stephens, V.C., Conine, J.W. and Murphy, H.W. (1959) Esters of Erythromycin. IV. Alkyl Sulfate Salts. Journal of the American Pharmaceutical Association, 48, 620-622.
https://doi.org/10.1002/jps.3030481104
[46]  Welling, P.G. and Craig, W.A. (1978) Pharmacokinetics of Intravenous Erythromycin. Journal of Pharmaceutical Sciences, 67, 1057-1059.
https://doi.org/10.1002/jps.2600670809
[47]  Patamasucon, P., Kaojarern, S., Kusmiesz, H. and Nelson, J.D. (1981) Pharmacokinetics of Erythromycin Ethylsuccinate and Estolate in Infants under 4 Months of Age. Antimicrobial Agents and Chemotherapy, 19, 736-739.
https://doi.org/10.1128/AAC.19.5.736
[48]  Chun, A.H.C. and Seitz, J.A. (1977) Pharmacokinetics and Biological Availability of Erythromycin. Infection, 5, 14-22.
[49]  Mather, L.E., Austin, K.L., Philpot, C.R. and McDonald, P.J. (1981) Absorption and Bioavailability of Oral Erythromycin. British Journal of Clinical Pharmacology, 12, 131-140.
https://doi.org/10.1111/j.1365-2125.1981.tb01191.x
[50]  Bahal, N. and Nahata, M.C. (1992) The New Macrolide Antibiotics: Azithromycin, Clarithromycin, Dirithromycin, and Roxithromycin. The Annals of Pharmacotherapy, 26, 46-55.
https://doi.org/10.1177/106002809202600112
[51]  Peters, D.H. and Clissold, S.P. (1992) Clarithromycin. A Review of Its Antimicrobial Activity, Pharmacokinetic Properties and Therapeutic Potential. Drugs, 44, 117-164.
https://doi.org/10.2165/00003495-199244010-00009
[52]  Langtry, H.D. and Brogden, R.N. (1997) Clarithromycin. A Review of Its Efficacy in the Treatment of Respiratory Tract Infections in Immunocompetent Patients. Drugs, 53, 973-1004.
https://doi.org/10.2165/00003495-199753060-00006
[53]  Watanabe, Y., Morimoto, S., Goi, M., Mitsukuchi, M., Adachi, T., Nakagami, J. and Sota, K. (1987) Method for Selective Methylation of Erythromycin a Derivatives. US Patent No. 4672109.
[54]  Fraschini, F., Scaglione, F. and Demartini, G. (1993) Clarithromycin Clinical Pharmacokinetics. Clinical Pharmacokinetics, 25, 189-204.
https://doi.org/10.2165/00003088-199325030-00003
[55]  Sturgill, M.G. and Rapp, R.P. (1992) Clarithromycin: Review of a New Macrolide Antibiotic with Improved Microbiologic Spectrum and Favorable Pharmacokinetic and Adverse Effect Profiles. The Annals of Pharmacotherapy, 26, 1099-1108.
https://doi.org/10.1177/106002809202600912
[56]  Davidson R.J. (2019) In Vitro Activity and Pharmacodynamic/Pharmacokinetic Parameters of Clarithromycin and Azithromycin: Why They Matter in the Treatment of Respiratory Tract Infections. Infection and Drug Resistance, 12, 585-596.
https://doi.org/10.2147/IDR.S187226
[57]  Saverino, D., Debbia, E.A., Pesce, A., Lepore, A.M. and Schito, G.C. (1992) Antibacterial Profile of Flurithromycin, a New Macrolide. The Journal of Antimicrobial Chemotherapy, 30, 261-272.
[58]  Villa, P., Corti, F., Guaitani, A., Bartosek, I., Casacci, F., De Marchi, F. and Pacei, E. (1986) Effects of a New Fluorinated Macrolide (P-0501A) and Other Erythromycins on Drug Metabolizing Enzymes in Rat Liver. The Journal of antibiotics, 39, 463-468.
https://doi.org/10.7164/antibiotics.39.463
[59]  Benoni, G., Cuzzolin, L., Leone, R., Consolo, U., Ferronato, G., Bertrand, C., Puchetti, V. and Fracasso, M.E. (1988) Pharmacokinetics and Human Tissue Penetration of Flurithromycin. Antimicrobial Agents and Chemotherapy, 32, 1875-1878.
https://doi.org/10.1128/AAC.32.12.1875
[60]  Galioto, G.B., Mevio, E., Galioto, P., Zanuso, G. and Lepore, A.M. (1989) Concentrations of Flurithromycin in Serum and Tonsils. International Journal of Clinical Pharmacology, Therapy, and Toxicology, 27, 126-128.
[61]  Furneri, P.M., Bisignano, G., Cerniglia, G., Tempera, G. and Nicoletti, G. (1995) In-Vitro Antimycoplasmal Activity of Flurithromycin. The Journal of Antimicrobial Chemotherapy, 35, 161-165.
https://doi.org/10.1093/jac/35.1.161
[62]  Gasc, J.C., D’Ambrieres, S.G., Lutz, A. and Chantot, J.F. (1991) New Ether Oxime Derivatives of Erythromycin A. A Structure-Activity Relationship Study. The Journal of Antibiotics, 44, 313-330.
[63]  Gentry, L.O. (1987) Roxithromycin, a new Macrolide Antibiotic, in the Treatment of Infections in the Lower Respiratory Tract: An Overview. The Journal of Antimicrobial Chemotherapy, 20, 145-152.
https://doi.org/10.1093/jac/20.suppl_B.145
[64]  Lassman, H.B., Puri, S.K., Ho, I., Sabo, R. and Mezzino, M.J. (1988) Pharmacokinetics of Roxithromycin (RU 965). Journal of Clinical Pharmacology, 28, 141-152.
https://doi.org/10.1002/j.1552-4604.1988.tb05738.x
[65]  Puri, S.K. and Lassman, H.B. (1987) Roxithromycin: A Pharmacokinetic Review of a Macrolide. The Journal of Antimicrobial Chemotherapy, 20, 89-100.
https://doi.org/10.1093/jac/20.suppl_B.89
[66]  Pechère J.C. (1992) Clinical Evaluation of Roxithromycin 300 mg Once Daily as an Alternative to 150 mg Twice Daily. Diagnostic Microbiology and Infectious Disease, 15, 111S-117S.
https://doi.org/10.1016/0732-8893(92)90137-I
[67]  Herron J.M. (1987) Roxithromycin in the Therapy of Streptococcus Pyogenes Throat Infections. The Journal of Antimicrobial Chemotherapy, 20, 139-144.
https://doi.org/10.1093/jac/20.suppl_B.139
[68]  De Campora, E., Camaioni, A., Leonardi, M., Fardella, P. and Fiaoni, M. (1992) Comparative Efficacy and Safety of Roxithromycin and Clarithromycin in Upper respiratory Tract Infections. Diagnostic Microbiology and Infectious Disease, 15, 119S-122S.
https://doi.org/10.1016/0732-8893(92)90138-J
[69]  Massey, E.H., Kitchell, B.S., Martin, L.D. and Gerzon, K. (1974) Antibacterial Activity of 9(S)-Erythromycylamine-Aldehyde Condensation Products. Journal of Medicinal Chemistry, 17, 105-107.
https://doi.org/10.1021/jm00247a018
[70]  Massey, E.H., Kitchell, B., Martin, L.D., Gerzon, K. and Murphy, H.W. (1970) Erythromycylamine. Tetrahedron Letters, 157-160.
https://doi.org/10.1016/S0040-4039(01)97664-6
[71]  Mtairag, E.M., Abdelghaffar, H. and Labro, M.T. (1994) Investigation of Dirithromycin and Erythromycylamine Uptake by Human Neutrophils in Vitro. The Journal of Antimicrobial Chemotherapy, 33, 523-536.
https://doi.org/10.1093/jac/33.3.523
[72]  Wintermeyer, S.M., Abdel-Rahman, S.M. and Nahata, M.C. (1996) Dirithromycin: A New Macrolide. The Annals of Pharmacotherapy, 30, 1141-1149.
https://doi.org/10.1177/106002809603001014
[73]  Counter, F.T., Ensminger, P.W., Preston, D.A., Wu, C.Y., Greene, J.M., Felty-Duckworth, A.M., Paschal, J.W. and Kirst, H.A. (1991) Synthesis and Antimicrobial Evaluation of Dirithromycin (AS-E 136; LY237216), A New Macrolide Antibiotic Derived from Erythromycin. Antimicrobial Agents and Chemotherapy, 35, 1116-1126.
https://doi.org/10.1128/AAC.35.6.1116
[74]  Brogden, R.N. and Peters, D.H. (1994) Dirithromycin. A Review of Its Antimicrobial Activity, Pharmacokinetic Properties and Therapeutic Efficacy. Drugs, 48, 599-616.
https://doi.org/10.2165/00003495-199448040-00008
[75]  Sides, G.D., Cerimele, B.J., Black, H.R., Busch, U. and DeSante, K.A. (1993) Pharmacokinetics of Dirithromycin. The Journal of Antimicrobial Chemotherapy, 31, 65-75.
https://doi.org/10.1093/jac/31.suppl_C.65
[76]  Peters, D.H., Friedel, H.A. and McTavish, D. (1992) Azithromycin. A Review of Its Antimicrobial Activity, Pharmacokinetic Properties and Clinical Efficacy. Drugs, 44, 750-799.
https://doi.org/10.2165/00003495-199244050-00007
[77]  Schönfeld, W. and Mutak, S. (2002) Azithromycin and Novel Azalides. In: Schönfeld, W. and Kirst, H.A., Eds., Macrolide Antibiotics. Milestones in Drug Therapy MDT, Birkhäuser, Basel, 73-95.
https://doi.org/10.1007/978-3-0348-8105-0_6
[78]  Roblin, P.M. and Hammerschlag, M.R. (1998) Microbiologic Efficacy of Azithromycin and Susceptibilities to Azithromycin of Isolates of Chlamydia Pneumoniae from Adults and Children with Community-Acquired Pneumonia. Antimicrobial Agents and Chemotherapy, 42, 194-196.
https://doi.org/10.1128/AAC.42.1.194
[79]  Lode, H., Borner, K., Koeppe, P. and Schaberg, T. (1996) Azithromycin—Review of Key Chemical, Pharmacokinetic and Microbiological Features. The Journal of Antimicrobial Chemotherapy, 37, 1-8.
https://doi.org/10.1093/jac/37.suppl_C.1
[80]  Labro, M.T. (1998) Anti-Inflammatory Activity of Macrolides: A New Therapeutic Potential? The Journal of Antimicrobial Chemotherapy, 41, 37-46.
https://doi.org/10.1093/jac/41.suppl_2.37 Labro, M.T. (2004) Macrolide Antibiotics: Current and Future Uses. Expert Opinion on Pharmacotherapy, 5, 541-550.
https://doi.org/10.1093/jac/41.suppl_2.37
[81]  Ianaro, A., Ialenti, A., Maffia, P., Sautebin, L., Rombolà, L., Carnuccio, R., Iuvone, T., D’Acquisto, F. and Di Rosa, M. (2000) Anti-Inflammatory Activity of Macrolide Antibiotics. The Journal of Pharmacology and Experimental Therapeutics, 292, 156-163.
[82]  Culić, O., Eraković, V. and Parnham, M.J. (2001) Anti-Inflammatory Effects of Macrolide Antibiotics. European Journal of Pharmacology, 429, 209-229.
https://doi.org/10.1016/S0014-2999(01)01321-8
[83]  Amsden G.W. (2005) Anti-Inflammatory Effects of Macrolides-An Underappreciated benefit in the Treatment of Community-Acquired Respiratory Tract Infections and Chronic Inflammatory Pulmonary Conditions? The Journal of Antimicrobial Chemotherapy, 55, 10-21.
https://doi.org/10.1093/jac/dkh519
[84]  Deshpande, D., Pasipanodya, J.G. and Gumbo, T. (2016) Azithromycin Dose To Maximize Efficacy and Suppress Acquired Drug Resistance in Pulmonary Mycobacterium avium Disease. Antimicrobial Agents and Chemotherapy, 60, 2157-2163.
https://doi.org/10.1128/AAC.02854-15
[85]  Alffenaar, J.C. and Van Ingen, J. (2017) Treatment of Mycobacterium avium-Intracellulare Complex: A Great Leap Forward. The Journal of Antimicrobial Chemotherapy, 72, i1-i2.
https://doi.org/10.1093/jac/dkx310
[86]  Van Eijk, A.M. and Terlouw, D.J. (2011) Azithromycin for Treating Uncomplicated Malaria. The Cochrane Database of Systematic Reviews, No. 2, Article No. CD006688.
https://doi.org/10.1002/14651858.CD006688.pub2
[87]  Rosenthal P.J. (2016) Azithromycin for Malaria? The American Journal of Tropical Medicine and Hygiene, 95, 2-4.
https://doi.org/10.4269/ajtmh.16-0332
[88]  Gielen, V., Johnston, S.L. and Edwards, M.R. (2010) Azithromycin Induces Anti-Viral Responses in Bronchial Epithelial Cells. The European Respiratory Journal, 36, 646-654.
https://doi.org/10.1183/09031936.00095809
[89]  Min, J.Y. and Jang, Y.J. (2012) Macrolide Therapy in Respiratory Viral Infections. Mediators of Inflammation, 2012, Article ID: 649570.
https://doi.org/10.1155/2012/649570
[90]  Zhou, X., Zhang, Y., Li, Y., Hao, X., Liu, X. and Wang, Y. (2012) Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells. Cancers, 4, 1318-1332.
https://doi.org/10.3390/cancers4041318
[91]  Qiao, X., Wang, X., Shang, Y., Li, Y. and Chen, S.Z. (2018) Azithromycin Enhances Anticancer Activity of TRAIL by Inhibiting Autophagy and Up-Regulating the Protein Levels of DR4/5 in Colon Cancer Cells in Vitro and in Vivo. Cancer Communications (London, England), 38, 1-13.
https://doi.org/10.1186/s40880-018-0309-9
[92]  Viget, N., Legout, L. and Alfandari, S. (2005) Kétolides. EMC-Maladies Infectieuses, 2, 33-41.
https://doi.org/10.1016/j.emcmi.2004.09.001
[93]  Ma, Z. and Nemoto, P.A. (2002) Discovery and Development of Ketolides as a New Generation of Macrolide Antimicrobial Agents. Current Medicinal Chemistry-Anti-Infective Agents, 1, 15-34.
https://doi.org/10.2174/1568012023355027
[94]  Zhanel, G.G., Walters, M., Noreddin, A., Vercaigne, L.M., Wierzbowski, A., Embil, J.M., Gin, A.S., Douthwaite, S. and Hoban, D.J. (2002) The Ketolides: A Critical Review. Drugs, 62, 1771-1804.
https://doi.org/10.2165/00003495-200262120-00006
[95]  Schlünzen, F., Harms, J.M., Franceschi, F., Hansen, H.A., Bartels, H., Zarivach, R. and Yonath, A. (2003) Structural Basis for the Antibiotic Activity of Ketolides and Azalides. Structure, 11, 329-338.
https://doi.org/10.1016/S0969-2126(03)00022-4
[96]  Rickards, R.W., Smith, R.M. and Majer, J. (1968) The Structure of the Macrolide Antibiotic Picromycin. Chemical Communications (London), 17, 1049-1050.
https://doi.org/10.1039/c19680001049
[97]  Almutairi, M.M., Svetlov, M.S., Hansen, D.A., Khabibullina, N.F., Klepacki, D., Kang, H.Y., Sherman, D.H., Vázquez-Laslop, N., Polikanov, Y.S. and Mankin, A.S. (2017) Co-Produced Natural Ketolides Methymycin and Pikromycin Inhibit Bacterial Growth by Preventing Synthesis of a Limited Number of Proteins. Nucleic Acids Research, 45, 9573-9582.
https://doi.org/10.1093/nar/gkx673
[98]  Almutairi, M.M. (2015) The Natural Ketolides Methymycin and Pikromycin: Binding Sites, Modes of Action, Mechanisms of Resistance. Doctoral Dissertation, University of Illinois at Chicago, Chicago.
[99]  Arsic, B., Novak, P., Kragol, G., Barber, J., Rimoli, M.G. and Sodano, F. (2018) Macrolides: Properties, Synthesis and Applications. De Gruyter, Berlin.
https://doi.org/10.1515/9783110515756
[100]  Bryskier, A. (1999) New Research in Macrolides and Ketolides since 1997. Expert Opinion on Investigational Drugs, 8, 1171-1194.
https://doi.org/10.1517/13543784.8.8.1171
[101]  Resek, J.E., Wang, X.C. and Bhatia, A.V. (2000) Highlights of Recent Research on the Synthesis of Ketolide Antibiotics. Current Opinion in Drug Discovery & Development, 3, 807-817.
[102]  Bhatia, A.V. (2004) Strategies Leading to the Synthesis of a Novel Ketolide Antibiotic. Strategies and Tactics in Organic Synthesis, 5, 133-152.
https://doi.org/10.1016/S1874-6004(04)80028-5
[103]  Wei, X. and You, Q. (2006) A Facile and Scaleable Synthesis of 3-O-Decladinose-6-Methyl-10,11-Dehydrate-Erythromycin-3-One-2’-Acetate, an Important Intermediate for Ketolide Synthesis. Organic Process Research & Development, 10, 446-449.
https://doi.org/10.1021/op060001x
[104]  Bulkley, D., Innis, C.A., Blaha, G. and Steitz, T.A. (2010) Revisiting the Structures of Several Antibiotics Bound to the Bacterial Ribosome. Proceedings of the National Academy of Sciences of the United States of America, 107, 17158-17163.
https://doi.org/10.1073/pnas.1008685107
[105]  Or, Y.S., Clark, R.F., Wang, S., Chu, D.T., Nilius, A.M., Flamm, R.K., Mitten, M., Ewing, P., Alder, J. and Ma, Z. (2000) Design, Synthesis, and Antimicrobial Activity of 6-O-Substituted Ketolides Active against Resistant Respiratory Tract Pathogens. Journal of Medicinal Chemistry, 43, 1045-1049.
https://doi.org/10.1021/jm990618n
[106]  Ma, Z., Clark, R.F., Brazzale, A., Wang, S., Rupp, M.J., Li, L., Griesgraber, G., Zhang, S., Yong, H., Phan, L.T., Nemoto, P.A., Chu, D.T., Plattner, J.J., Zhang, X., Zhong, P., Cao, Z., Nilius, A.M., Shortridge, V.D., Flamm, R., Mitten, M., Or, Y.S. (2001) Novel Erythromycin Derivatives with Aryl Groups Tethered to the C-6 Position are Potent Protein Synthesis Inhibitors and Active Against Multidrug-Resistant Respiratory Pathogens. Journal of Medicinal Chemistry, 44, 4137-4156.
https://doi.org/10.1021/jm0102349
[107]  Plata, D.J., Leanna, M.R., Rasmussen, M., McLaughlin, M.A., Condon, S.L., Kerdesky, F.A. and Wittenberger, S.J. (2004) The Synthesis of Ketolide Antibiotic ABT-773 (Cethromycin). Tetrahedron, 60, 10171-10180.
https://doi.org/10.1016/j.tet.2004.09.027
[108]  Baker, W.R. and Clark, J.D. (1988) Semisynthetic Erythromycin Antibiotics. US Patent No. 4742049.
[109]  Slawinski, W., Bojarska-Dahlig, H., Glabski, T., Dziegielewska, I., Biedrzycki, M. and Naperty, S. (1975) The Structure of Erythromycin a Cyclic Carbonate. Recueil des Travaux Chimiques des Pays-Bas, 94, 236-238.
https://doi.org/10.1002/recl.19750941104
[110]  Bryskier, A. (2000) Ketolides-Telithromycin, an Example of New Class of Antibacterial Agents. Clinical Microbiology and Infection, 6, 661-669.
https://doi.org/10.1046/j.1469-0691.2000.00185.x
[111]  Hunt, E., Knowles, D.J., Shillingford, C. and Zomaya, I.I. (1988) Erythromycin a 11,12-Methylene Acetal. The Journal of Antibiotics, 41, 1644-1648.
https://doi.org/10.7164/antibiotics.41.1644
[112]  Baker, W.R., Clark, J. D., Stephens, R.L. and Kim, K.H. (1988) Modification of Macrolide Antibiotics. Synthesis of 11-Deoxy-11-(Carboxyamino)-6-O-Methylerythromycin A 11, 12-(Cyclic Esters) via an Intramolecular Michael Reaction of O-Carbamates with an α, β-Unsaturated Ketone. The Journal of Organic Chemistry, 53, 2340-2345.
https://doi.org/10.1021/jo00245a038
[113]  Ruan, Z.X., Huangfu, D.S., Xu, X.J., Sun, P.H. and Chen, W.M. (2013) 3D-QSAR and Molecular Docking for the Discovery of Ketolide Derivatives. Expert Opinion on Drug Discovery, 8, 427-444.
https://doi.org/10.1517/17460441.2013.774369
[114]  Elliott, R.L., Pireh, D., Griesgraber, G., Nilius, A.M., Ewing, P.J., Bui, M.H., Raney, P.M., Flamm, R.K., Kim, K., Henry, R.F., Chu, D.T., Plattner, J.J. and Or, Y.S. (1998) Anhydrolide macrolides. 1. Synthesis and Antibacterial Activity of 2, 3-Anhydro-6-O-Methyl 11, 12-Carbamate Erythromycin A Analogues. Journal of Medicinal Chemistry, 41, 1651-1659.
https://doi.org/10.1021/jm970547x
[115]  Allen, M.S., Premchandran, R.H., Chang, S.J., Condon, S., Demattei, J.A., King, S.A. and Patel, S.R. (2003) Preparation of Quinoline-Substituted Carbonate and Carbamate Derivatives. US Patent No. 6579986.
[116]  Denis, A., Agouridas, C., Auger, J.M., Benedetti, Y., Bonnefoy, A., Bretin, F., Chantot, J. F., Dussarat, A., Fromentin, C., D’Ambrières, S. G., Lachaud, S., Laurin, P., Le Martret, O., Loyau, V., Tessot, N., Pejac, J.M. and Perron, S. (1999) Synthesis and Antibacterial Activity of HMR 3647 a New Ketolide Highly Potent against Erythromycin-Resistant and Susceptible Pathogens. Bioorganic & Medicinal Chemistry Letters, 9, 3075-3080.
https://doi.org/10.1016/S0960-894X(99)00534-X
[117]  Brook, I. and Hausfeld, J.N. (2006) Effect of Telithromycin and Azithromycin on Nasopharyngeal Bacterial Flora in Patients with Acute Maxillary Sinusitis. Archives of Otolaryngology—Head & Neck Surgery, 132, 442-445.
https://doi.org/10.1001/archotol.132.4.442
[118]  Wellington, K. and Noble, S. (2004) Telithromycin. Drugs, 64, 1683-1696.
https://doi.org/10.2165/00003495-200464150-00006
[119]  Giovanetti, E., Montanari, M.P., Marchetti, F. and Varaldo, P.E. (2000) In Vitro Activity of Ketolides Telithromycin and HMR 3004 against Italian Isolates of streptococcus Pyogenes and Streptococcus Pneumoniae with Different Erythromycin Susceptibility. The Journal of Antimicrobial Chemotherapy, 46, 905-908.
https://doi.org/10.1093/jac/46.6.905
[120]  Shi, J., Montay, G. and Bhargava, V.O. (2005) Clinical Pharmacokinetics of Telithromycin, the First Ketolide Antibacterial. Clinical Pharmacokinetics, 44, 915-934.
https://doi.org/10.2165/00003088-200544090-00003
[121]  Bertrand, D., Bertrand, S., Neveu, E. and Fernandes, P. (2010) Molecular Characterization of Off-Target Activities of Telithromycin: A Potential Role for Nicotinic Acetylcholine Receptors. Antimicrobial Agents and Chemotherapy, 54, 5399-5402.
https://doi.org/10.1128/AAC.00840-10
[122]  Chen, X.Z., Xu, P., Liu, L., Zheng, D. and Lei, P.S. (2011) Synthesis and Antibacterial Activity of Novel Ketolides with 11,12-Sulfur Contained Aryl Alkyl Side Chains. European Journal of Medicinal Chemistry, 46, 208-217.
https://doi.org/10.1016/j.ejmech.2010.11.004
[123]  Mansour, H., Chahine, E. B., Karaoui, L.R. and El-Lababidi, R.M. (2013) Cethromycin: A New Ketolide Antibiotic. The Annals of Pharmacotherapy, 47, 368-379.
https://doi.org/10.1345/aph.1R435
[124]  Beebe, X., Yang, F., Bui, M.H., Mitten, M.J., Ma, Z., Nilius, A.M. and Djuric, S.W. (2004) Synthesis and Antibacterial Activity of 6-O-Arylpropargyl-9-Oxime-11,12-Carbamate Ketolides. Bioorganic & Medicinal Chemistry Letters, 14, 2417-2421.
https://doi.org/10.1016/j.bmcl.2004.03.020
[125]  Yong, H., Gu, Y.G., Clark, R.F., Marron, T., Ma, Z., Soni, N., Stone, G.G., Nilius, A. M., Marsh, K. and Djuric, S.W. (2005) Design, Synthesis and Structure-Activity Relationships of 6-O-Arylpropargyl Diazalides with Potent Activity against Multidrug-Resistant Streptococcus Pneumoniae. Bioorganic & Medicinal Chemistry Letters, 15, 2653-2658.
https://doi.org/10.1016/j.bmcl.2005.03.011
[126]  Conte, J.E., Jr. Golden, J.A., Kipps, J. and Zurlinden, E. (2004) Steady-State Plasma and Intrapulmonary Pharmacokinetics and Pharmacodynamics of Cethromycin. Antimicrobial Agents and Chemotherapy, 48, 3508-3515.
https://doi.org/10.1128/AAC.48.9.3508-3515.2004
[127]  Rafie, S., MacDougall, C. and James, C.L. (2010) Cethromycin: A Promising New Ketolide Antibiotic for Respiratory Infections. Pharmacotherapy, 30, 290-303.
https://doi.org/10.1592/phco.30.3.290
[128]  Liang J.H. (2015) Introduction of a Nitrogen-Containing Side Chain Appended on C-10 of Cethromycin Leads to Reduced CYP3A4 Inhibition (WO2014049356A1) Expert Opinion on Therapeutic Patents, 25, 119-123.
https://doi.org/10.1517/13543776.2014.971754
[129]  FDA (2009) Cethromycin Briefing Document for the Anti-Infective Drugs Advisory Committee.
http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/UCM161850.pdf
[130]  English, M.L., Fredericks, C.E., Milanesio, N.A., Rohowsky, N., Xu, Z.Q., Jenta, T.R., Flavin, M.T. and Eiznhamer, D.A. (2012) Cethromycin versus Clarithromycin for Community-Acquired Pneumonia: Comparative Efficacy and Safety Outcomes from Two Double-Blinded, Randomized, Parallel-Group, Multicenter, Multinational Noninferiority Studies. Antimicrobial Agents and Chemotherapy, 56, 2037-2047.
https://doi.org/10.1128/AAC.05596-11
[131]  Zhu, B., Marinelli, B.A., Abbanat, D., Foleno, B.D., Bush, K. and Macielag, M.J. (2007) Synthesis and Antibacterial Activity of 3-Keto-6-O-Carbamoyl-11,12-cyclic Thiocarbamate Erythromycin A Derivatives. Bioorganic & Medicinal Chemistry letters, 17, 3900-3904.
https://doi.org/10.1016/j.bmcl.2007.04.104
[132]  Griesgraber, G., Or, Y.S., Chu, D.T., Nilius, A.M., Johnson, P.M., Flamm, R.K., Henry, R.F. and Plattner, J.J. (1996) 3-Keto-11,12-Carbazate Derivatives of 6-O-Methylerythromycin A Synthesis and in Vitro Activity. The Journal of Antibiotics, 49, 465-477.
[133]  Rodgers, W., Frazier, A.D. and Champney, W.S. (2013) Solithromycin Inhibition of Protein Synthesis and Ribosome Biogenesis in Staphylococcus Aureus, Streptococcus Pneumoniae, and Haemophilus Influenzae. Antimicrobial Agents and Chemotherapy, 57, 1632-1637.
https://doi.org/10.1128/AAC.02316-12
[134]  Xu, X., Henninger, T., Abbanat, D., Bush, K., Foleno, B., Hilliard, J. and Macielag, M. (2005) Synthesis and Antibacterial Activity of C2-Fluoro, C6-Carbamate Ketolides, and Their C9-Oximes. Bioorganic & Medicinal Chemistry Letters, 15, 883-887.
https://doi.org/10.1016/j.bmcl.2004.12.067
[135]  Fernandes, P., Martens, E., Bertrand, D. and Pereira, D. (2016) The solithromycin journey-It is all in the chemistry. Bioorganic & Medicinal Chemistry, 24, 6420-6428.
https://doi.org/10.1016/j.bmc.2016.08.035
[136]  McGhee, P., Clark, C., Kosowska-Shick, K.M., Nagai, K., Dewasse, B., Beachel, L. and Appelbaum, P.C. (2010) In Vitro Activity of Golparian, against Streptococcus Pneumoniae and Streptococcus Pyogenes with Defined Macrolide Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 54, 230-238.
https://doi.org/10.1128/AAC.01123-09
[137]  Putnam, S.D., Sader, H.S., Farrell, D.J., Biedenbach, D.J. and Castanheira, M. (2011) Antimicrobial Characterisation of Solithromycin (CEM-101), a Novel Fluoroketolide: Activity against Staphylococci and Enterococci. International Journal of Antimicrobial Agents, 37, 39-45.
https://doi.org/10.1016/j.ijantimicag.2010.08.021
[138]  Wittlin, S., Ekland, E., Craft, J.C., Lotharius, J., Bathurst, I., Fidock, D.A. and Fernandes, P. (2012) In Vitro and in Vivo Activity Of Solithromycin (CEM-101) against Plasmodium Species. Antimicrobial Agents and Chemotherapy, 56, 703-707.
https://doi.org/10.1128/AAC.05039-11
[139]  Golparian, D., Fernandes, P., Ohnishi, M., Jensen, J.S. and Unemo, M. (2012) In Vitro Activity of the New Fluoroketolide Solithromycin (CEM-101) against a Large Collection of Clinical Neisseria Gonorrhoeae Isolates and International Reference Strains, Including Those with High-Level Antimicrobial Resistance: Potential Treatment Option for Gonorrhea? Antimicrobial Agents and Chemotherapy, 56, 2739-2742.
https://doi.org/10.1128/AAC.00036-12
[140]  Mallegol, J., Fernandes, P., Seah, C., Guyard, C. and Melano, R.G. (2013) Determination of in Vitro Activities of Solithromycin at Different pHs and Its Intracellular Activity against Clinical Isolates of Neisseria Gonorrhoeae from a Laboratory Collection. Antimicrobial Agents and Chemotherapy, 57, 4322-4328.
https://doi.org/10.1128/AAC.00564-13
[141]  Still, J.G., Schranz, J., Degenhardt, T.P., Scott, D., Fernandes, P., Gutierrez, M.J. and Clark, K. (2011) Pharmacokinetics of Solithromycin (CEM-101) after Single or Multiple Oral Doses and Effects of Food on Single-Dose Bioavailability in Healthy Adult Subjects. Antimicrobial Agents and Chemotherapy, 55, 1997-2003.
https://doi.org/10.1128/AAC.01429-10
[142]  Jensen, J.S., Fernandes, P. and Unemo, M. (2014) In Vitro Activity of the New Fluoroketolide Solithromycin (CEM-101) against Macrolide-Resistant and-Susceptible Mycoplasma Genitalium Strains. Antimicrobial Agents and Chemotherapy, 58, 3151-3156.
https://doi.org/10.1128/AAC.02411-14
[143]  Kobayashi, Y., Wada, H., Rossios, C., Takagi, D., Higaki, M., Mikura, S., Goto, H., Barnes, P.J. and Ito, K. (2013) A Novel Macrolide Solithromycin Exerts Superior Anti-Inflammatory Effect via NF-κB Inhibition. The Journal of Pharmacology and Experimental Therapeutics, 345, 76-84.
https://doi.org/10.1124/jpet.112.200733
[144]  Keelan, J.A., Kemp, M.W., Payne, M.S., Johnson, D., Stock, S.J., Saito, M., Fernandes, P. and Newnham, J.P. (2014) Maternal Administration of Solithromycin, a New, Potent, Broad-Spectrum Fluoroketolide Antibiotic, Achieves Fetal and Intra-Amniotic Antimicrobial Protection in a Pregnant Sheep Model. Antimicrobial Agents and Chemotherapy, 58, 447-454.
https://doi.org/10.1128/AAC.01743-13
[145]  Rodvold, K.A., Gotfried, M.H., Still, J.G., Clark, K. and Fernandes, P. (2012) Comparison of Plasma, Epithelial Lining Fluid, and Alveolar Macrophage CONCENTRATIONS of Solithromycin (CEM-101) in Healthy Adult Subjects. Antimicrobial Agents and Chemotherapy, 56, 5076-5081.
https://doi.org/10.1128/AAC.00766-12
[146]  Oldach, D., Clark, K., Schranz, J., Das, A., Craft, J.C., Scott, D., Jamieson, B.D. and Fernandes, P. (2013) Randomized, Double-Blind, Multicenter Phase 2 Study Comparing the Efficacy and Safety of Oral Solithromycin (CEM-101) to Those of Oral Levofloxacin in the Treatment of Patients with Community-Acquired Bacterial Pneumonia. Antimicrobial Agents and Chemotherapy, 57, 2526-2534.
https://doi.org/10.1128/AAC.00197-13
[147]  Jiang, J.W., Sun, Y., Nie, Y., Zhi, H.J., Zhang, X.J., Li, X., Sun, H.P. and You, Q.D. (2013) Synthesis and Antibacterial Evaluation of a Novel Series of 10-Hydroxyl Ketolide Derivatives. Bioorganic & Medicinal Chemistry Letters, 23, 3452-3457.
https://doi.org/10.1016/j.bmcl.2013.03.057
[148]  Glassford, I., Teijaro, C.N., Daher, S.S., Weil, A., Small, M.C., Redhu, S.K., Colussi, D.J., Jacobson, M.A., Childers, W.E., Buttaro, B., Nicholson, A.W., MacKerell, A.D., Jr, Cooperman, B.S. and Andrade, R.B. (2016) Ribosome-Templated Azide-Alkyne Cycloadditions: Synthesis of Potent Macrolide Antibiotics by in Situ Click Chemistry. Journal of the American Chemical Society, 138, 3136-3144.
https://doi.org/10.1021/jacs.5b13008
[149]  Zhao, Z.H., Zhang, X.X., Jin, L.L., Yang, S. and Lei, P.S. (2018) Synthesis and Antibacterial Activity of Novel Ketolides with 11,12-Quinoylalkyl Side Chains. Bioorganic & Medicinal Chemistry Letters, 28, 2358-2363.
https://doi.org/10.1016/j.bmcl.2018.06.039
[150]  Seiple, I.B., Zhang, Z., Jakubec, P., Langlois-Mercier, A., Wright, P.M., Hog, D.T., Yabu, K., Allu, S.R., Fukuzaki, T., Carlsen, P.N., Kitamura, Y., Zhou, X., Condakes, M.L., Szczypiński, F.T., Green, W.D. and Myers, A.G. (2016) A Platform for the Discovery of New Macrolide Antibiotics. Nature, 533, 338-345.
https://doi.org/10.1038/nature17967
[151]  Sugimoto, T., Shimazaki, Y., Manaka, A., Tanikawa, T., Suzuki, K., Nanaumi, K., Kaneda, Y., Yamasaki, Y. and Sugiyama, H. (2012) Synthesis and Antibacterial Activity of 6-O-(Heteroaryl-Isoxazolyl) Propynyl 2-Fluoro Ketolides. Bioorganic & Medicinal Chemistry Letters, 22, 5739-5743.
https://doi.org/10.1016/j.bmcl.2012.06.092
[152]  Magee, T.V., Ripp, S.L., Li, B., Buzon, R.A., Chupak, L., Dougherty, T.J., Finegan, S.M., Girard, D., Hagen, A.E., Falcone, M.J., Farley, K.A., Granskog, K., Hardink, J. R., Huband, M.D., Kamicker, B.J., Kaneko, T., Knickerbocker, M.J., Liras, J.L., Marra, A., Medina, I. and Flanagan, M.E. (2009) Discovery of Azetidinyl Ketolides for the Treatment of Susceptible and Multidrug Resistant Community-Acquired Respiratory Tract Infections. Journal of Medicinal Chemistry, 52, 7446-7457.
https://doi.org/10.1021/jm900729s
[153]  Li, B., Magee, T.V., Buzon, R.A., Widlicka, D.W., Bill, D.R., Brandt, T. and Flanagan, M.E. (2012) Process Development of a Novel Azetidinyl Ketolide Antibiotic. Organic Process Research & Development, 16, 788-797.
https://doi.org/10.1021/op300064b
[154]  Burger, M.T., Lin, X., Chu, D.T., Hiebert, C., Rico, A.C., Seid, M., Carroll, G.L., Barker, L., Huh, K., Langhorne, M., Shawar, R., Kidney, J., Young, K., Anderson, S., Desai, M.C. and Plattner, J.J. (2006) Synthesis and Antibacterial Activity of Novel C12 Vinyl Ketolides. Journal of Medicinal Chemistry, 49, 1730-1743.
https://doi.org/10.1021/jm051157a
[155]  Anwar, H.F., Andrei, M. and Undheim, K. (2017) Synthesis of Clarithromycin Ketolides Chemically Modified at the Unreactive C10-Methyl Group. Bioorganic & Medicinal Chemistry, 25, 2313-2326.
https://doi.org/10.1016/j.bmc.2017.02.041
[156]  Awan, A., Brennan, R.J., Regan, A.C. and Barber, J. (1995) Conformational Analysis of the Erythromycin Analogues Azithromycin and Clarithromycin in Aqueous Solution and Bound to Bacterial Ribosomes. Journal of the Chemical Society, Chemical Communications, No. 16, 1653-1654.
https://doi.org/10.1039/c39950001653 Awan, A., Brennan, R.J., Regan, A.C. and Barber, J. (2000) The Conformations of the Macrolide Antibiotics Erythromycin A, Azithromycin and Clarithromycin in Aqueous Solution: A 1H NMR Study. Journal of the Chemical Society, Perkin Transaction 2, 1645-1652.
https://doi.org/10.1039/b003000g
[157]  Bertho, G., Gharbi-Benarous, J., Delaforge, M. and Girault, J.P. (1998) Transferred Nuclear Overhauser Effect Study of Macrolide-Ribosome Interactions: Correlation between Antibiotic Activities and Bound Conformations. Bioorganic & Medicinal Chemistry, 6, 209-221.
https://doi.org/10.1016/S0968-0896(97)10028-1
[158]  Bertho, G., Gharbi-Benarous, J., Delaforge, M., Lang, C., Parent, A. and Girault, J.P. (1998) Conformational Analysis of Ketolide, Conformations of RU 004 in Solution and Bound to Bacterial Ribosomes. Journal of Medicinal Chemistry, 41, 3373-3386.
https://doi.org/10.1021/jm970852i
[159]  Evrard-Todeschi, N., Gharbi-Benarous, J., Gaillet, C., Verdier, L., Bertho, G., Lang, C., Parent, A. and Girault, J.P. (2000) Conformations in Solution and Bound to Bacterial Ribosomes of Ketolides, HMR 3647 (Telithromycin) and RU 72366: A New Class of Highly Potent Antibacterials. Bioorganic & Medicinal Chemistry, 8, 1579-1597.
https://doi.org/10.1016/S0968-0896(00)00091-2
[160]  LeTourneau, N., Vimal, P., Klepacki, D., Mankin, A. and Melman, A. (2012) SYNTHESIS and Antibacterial Activity of Desosamine-Modified Macrolide Derivatives. Bioorganic & Medicinal Chemistry Letters, 22, 4575-4578.
https://doi.org/10.1016/j.bmcl.2012.05.110
[161]  Jia, L., Yan, M., Shen, Y., Qin, Y., Qiang, S. and Ma, S. (2017) Synthesis and Antibacterial Evaluation of Novel 11-O-Carbamoyl Clarithromycin Ketolides. Bioorganic & Medicinal Chemistry Letters, 27, 3693-3697.
https://doi.org/10.1016/j.bmcl.2017.07.017
[162]  Teng, Y., Qin, Y., Song, D., Liu, X., Ma, Y., Zhang, P. and Ma, S. (2020) A Novel Series of 11-O-Carbamoyl-3-O-Descladinosyl Clarithromycin Derivatives Bearing 1,2,3-Triazole Group: Design, Synthesis and Antibacterial Evaluation. Bioorganic & Medicinal Chemistry Letters, 30, Article ID: 126850.
https://doi.org/10.1016/j.bmcl.2019.126850
[163]  Kolwas, J. (1981) Erythromycin A Carbonate. Drugs Today, 17, 26-27
[164]  Champney, W.S. and Tober, C.L. (1999) Superiority of 11,12 Carbonate Macrolide Antibiotics as Inhibitors of Translation and 50S Ribosomal Subunit Formation in Staphylococcus Aureus Cells. Current Microbiology, 38, 342-348.
https://doi.org/10.1007/PL00006814
[165]  Fernandes, P.B., Baker, W.R., Freiberg, L.A., Hardy, D.J. and McDonald, E.J. (1989) New Macrolides Active against Streptococcus Pyogenes with Inducible or Constitutive Type of Macrolide-Lincosamide-Streptogramin B Resistance. Antimicrobial Agents and Chemotherapy, 33, 78-81.
https://doi.org/10.1128/AAC.33.1.78
[166]  Anderson, M., Bergeron, J., Masamune, H., Norcia, M., Retsema, J. and Sutcliffe, J. (1995) Activity of CP-227,182, a Des-Cladinose 3 Keto Clarithromycin Derivative, in Cell Free Peptide Synthesis and Ribosome Binding Studies. In Abstracts Frontiers in Translation Conference, 145.
[167]  Bojarska-Dahlig H. (1990) Hepatotoxicity of Macrolide Antibiotics. The Journal of Antimicrobial Chemotherapy, 25, 475-477.
https://doi.org/10.1093/jac/25.3.475
[168]  Chen, X., Xu, P., Xu, Y., Liu, L., Liu, Y., Zhu, D. and Lei, P. (2012) Synthesis and Antibacterial Activity of Novel Modified 5-O-Desosamine Ketolides. Bioorganic & Medicinal Chemistry Letters, 22, 7402-7405.
https://doi.org/10.1016/j.bmcl.2012.10.064
[169]  Grant, E.B., Guiadeen, D., Abbanat, D., Foleno, B.D., Bush, K. and Macielag, M.J. (2006) Synthesis and Antibacterial Activity of 6-O-Heteroarylcarbamoyl-11,12-Lactoketolides. Bioorganic & Medicinal Chemistry Letters, 16, 1929-1933.
https://doi.org/10.1016/j.bmcl.2005.12.097
[170]  Hunziker, D., Wyss, P.C., Angehrn, P., Mueller, A., Marty, H.P., Halm, R., Kellenberger, L., Bitsch, V., Biringer, G., Arnold, W., Stämpfli, A., Schmitt-Hoffmann, A. and Cousot, D. (2004) Novel Ketolide Antibiotics with a Fused Five-Membered Lactone Ring—Synthesis, Physicochemical and Antimicrobial Properties. Bioorganic & Medicinal Chemistry, 12, 3503-3519.
https://doi.org/10.1016/j.bmc.2004.04.039
[171]  Pavlović, D., Mutak, S., Andreotti, D., Biondi, S., Cardullo, F., Paio, A., Piga, E., Donati, D. and Lociuro, S. (2014) Synthesis and Structure-Activity Relationships of α-Amino-γ-Lactone Ketolides: A Novel Class of Macrolide Antibiotics. ACS Medicinal Chemistry Letters, 5, 1133-1137.
https://doi.org/10.1021/ml500279k
[172]  Trivedi, B., Deshpande, P., Tadiparthi, R., Gupta, S., Diwakar, S., Pawar, S. and Mishra, A. (2015) Ketolide Compounds. US Patent No. 9175031.
[173]  Satav, J.S., Takalkar, S.S., Kulkarni, A.M., Bhagwat, S.S. and Patel, M.V. (2016) WCK 4873 (Nafithromycin): In Vitro and in Vivo Activity of Novel Lactone-Ketolide, against Clinically Relevant S. Pneumoniae (SPN) Resistotypes and Methicillin-Sensitive S. Aureus (MSSA), abstr Saturday-456. Abstr ASM Microbe.
[174]  Farrell, D.J., Sader, H.S., Rhomberg, P.R., Flamm, R.K. and Jones, R.N. (2016) In Vitro Activity of WCK 4873 (Nafithromycin) against Resistant Subsets of Streptococcus Pneumoniae from a Global Surveillance Program (2014), abstr Saturday-455. Abstr ASM Microbe, Boston, MA, American Society for Microbiology, Washington DC. Flamm, R.K., Rhomberg, P.R. and Sader, H.S. (2017) In Vitro Activity of the Novel Lactone Ketolide Nafithromycin (WCK 4873) against Contemporary Clinical Bacteria from a Global Surveillance Program. Antimicrobial Agents and Chemotherapy, 61, e01230-17.
https://doi.org/10.1128/AAC.01230-17
[175]  Dubois, J., Dubois, M. and Martel, J.F. In Vitro Activity of a Novel Lactone Ketolide WCK 4873 against Resistant Legionella Pneumophila, abstr Sunday-477. Abstr ASM Microbe, Boston, MA. American Society for Microbiology, Washington DC. Dubois, J., Dubois, M. and Martel, J.F. In Vitro Activity of a Novel Lactone ketolide WCK 4873 against Resistant Streptococcus Pneumoniae and Haemophilus Influenzae, abstr Sunday-475. Abstr ASM Microbe, Boston, MA. American Society for Microbiology, Washington DC. Dubois, J., Dubois, M. and Martel, J.F. In Vitro Intracellular Activity of a novel lactone ketolide WCK 4873 against Resistant Legionella Pneumophila, abstr Sunday-479. Abstr ASM Microbe, Boston, MA. American Society for Microbiology, Washington DC.
[176]  Waites, K.B., Crabb, D.M. and Duffy, L.B. (2016) In Vitro Activities of Investigational Ketolide WCK 4873 (Nafithromycin) and Other Antimicrobial agents against Human Mycoplasmas and Ureaplasmas, abstr Sunday-480. Abstr ASM Microbe, Boston, MA, USA. American Society for Microbiology, Washington DC, USA.
[177]  Kohlhoff, S.A. and Hammerschlag, M.R. In Vitro Activities of WCK 4873, a Second Generation Ketolide, against Chlamydia Pneumoniae, abstr Monday-012. Abstr ASM Microbe, Boston, MA. American Society for Microbiology, Washington DC.
[178]  Bhagwat, S.S., Takalkar, S.S., Satav, J.S., Kulkarni, A.M., Udaykar, A.P. and Patel, M. V. (2016) WCK 4873 (Nafithromycin): In Vivo Lung Infection Studies against Macrolide-Resistant (MR) and Telithromycin-Non-Susceptible (TEL-NS) Pneumococci. Abstr ASM Microbe.
[179]  Hackel, M.A., Karlowsky, J.A., Dressel, D. and Sahm, D.F. (2017) Determination of Disk Diffusion and MIC Quality Control Ranges for Nafithromycin (WCK 4873), a New Lactone-Ketolide. Journal of Clinical Microbiology, 55, 3021-3027.
https://doi.org/10.1128/JCM.00972-17
[180]  Deshpande, P., Tadiparthi, R. and Bhavsar, S. (2016) WCK 4873 (INN: Nafithromycin): Structure-Activity Relationship (SAR) Identifying a Lactone Ketolide with Activity against Telithromycin-Resistant (Tel-R) Pneumococci (SPN) and S. Pyogenes (SPY) Abstract: Saturday, 464, ASM Microbe, Boston, MA, USA.
[181]  Rodvold, K.A., Gotfried, M.H., Chugh, R., Gupta, M., Friedland, H.D. and Bhatia, A. (2017) Comparison of Plasma and Intrapulmonary Concentrations of Nafithromycin (WCK 4873) in Healthy Adult Subjects. Antimicrobial Agents and Chemotherapy, 61, e01096-17.
https://doi.org/10.1128/AAC.01096-17
[182]  Iwanowski, P., Bhatia, A., Gupta, M., Patel, A., Chavan, R., Yeole, R. and Friedland, D. (2019) Safety, tolerability and Pharmacokinetics of Oral Nafithromycin (WCK4873) after Single or Multiple Doses and Effects of Food on Single-Dose Bioavailability in Healthy Adult Subjects. Antimicrobial Agents and Chemotherapy, 63, e01253-19.
https://doi.org/10.1128/AAC.01253-19
[183]  Chavan, R., Zope, V.S., Yeole, R.D. and Patel, M.V. (2016) WCK 4873 (Nafithromycin): Assessment of in Vitro Human CYP Inhibitory Potential of a Novel Lactone-Ketolide. Open Forum Infectious Diseases, 3, 1808.
https://doi.org/10.1093/ofid/ofw172.1356
[184]  Nomura, T., Yasukata, T., Narukawa, Y. and Uotani, K. (2005) 9-Oxime-3-Ketolides: Modification at the C-11,12-Diol Moiety and Antibacterial Activities against Key Respiratory Pathogens. Bioorganic & Medicinal Chemistry, 13, 6054-6063.
https://doi.org/10.1016/j.bmc.2005.06.003
[185]  Nomura, T., Iwaki, T., Yasukata, T., Nishi, K., Narukawa, Y., Uotani, K., Hori, T. and Miwa, H. (2005) A New Type of Ketolides Bearing an N-Aryl-Alkyl Acetamide Moiety at the C-9 Iminoether Synthesis and Structure-Activity Relationships. Bioorganic & Medicinal Chemistry, 13, 6615-6628.
https://doi.org/10.1016/j.bmc.2005.07.041
[186]  Nomura, T., Iwaki, T., Narukawa, Y., Uotani, K., Hori, T. and Miwa, H. (2006) A New Type of Ketolide Bearing an N-Aryl-Alkyl Acetamide Moiety at the C-9 Iminoether: Synthesis and Structure-Activity Relationships (2) Bioorganic & Medicinal Chemistry, 14, 3697-3711.
https://doi.org/10.1016/j.bmc.2006.01.036
[187]  Nam, G., Kim, Y.S. and Choi, K.I. (2010) Synthesis and Antibacterial Activity of New 9-O-Arylpropenyloxime Ketolides. Bioorganic & Medicinal Chemistry Letters, 20, 2671-2674.
https://doi.org/10.1016/j.bmcl.2010.01.153
[188]  Kaneko, T., Mcmillen, W., Sutcliffe, J., Duignan, J. and Petitpas, J. (2000) Synthesis and in Vitro Activity of C2-Substituted C9-Oxime Ketolides. 40th Interscience Conference on Antimicrobial Agents & Chemotherapy, Toronto, Canada.
[189]  Girard, D., Mathieu, H.W., Finegan, S.M., Cimchowski, C.R., Kaneko, T.K. and Mcmillen, W. (2000) In Vivo Antibacterial Activity of CP-654, 743, a New C2-Fluoroketolide against Macrolide-Resistant Pneumococci and Haemophilus Influenzae. 40th Interscience Conference on Antimicrobial Agents & Chemotherapy, Toronto, Canada.
[190]  Girard, D., Mathieu, H.W., Shepard, R.M., Yee, S., Kaneko, T.K. and Mcmillen, W. (2000) Pharmacokinetics of CP-654,743, a New C2-Fluoro Ketolide Active against Macrolide Resistant Respiratory Pathogens, in Preclinical Species. 40th Interscience Conference on Antimicrobial Agents & Chemotherapy, Toronto, Canada.
[191]  Xu, Y., Chen, X., Zhu, D., Liu, Y., Zhao, Z., Jin, L., Liu, C. and Lei, P. (2013) Synthesis and Antibacterial Activity of Novel Modified 5-O-Mycaminose 14-Membered Ketolides. European Journal of Medicinal Chemistry, 69, 174-181.
https://doi.org/10.1016/j.ejmech.2013.08.023
[192]  Liang, J.H., An, K., Lv, W., Cushman, M., Wang, H. and Xu, Y.C. (2013) Synthesis, Antibacterial Activity and Docking of 14-Membered 9-O-(3-Arylalkyl) Oxime 1 11,12-Cyclic Carbonate Ketolides. European Journal of Medicinal Chemistry, 59, 54-63.
https://doi.org/10.1016/j.ejmech.2012.10.054
[193]  Tian, J.C., Han, X., Lv, W., Li, Y.X., Wang, H., Fan, B.Z., Cushman, M. and Liang, J.H. (2017) Design, Synthesis and Structure-Bactericidal Activity Relationships of Novel 9-Oxime Ketolides and Reductive Epimers of Acylides. Bioorganic & Medicinal Chemistry Letters, 27, 1513-1524.
https://doi.org/10.1016/j.bmcl.2017.02.041
[194]  Ma, C.X., Lv, W., Li, Y.X., Fan, B.Z., Han, X., Kong, F.S., Tian, J.C., Cushman, M. and Liang, J.H. (2019) Design, Synthesis and Structure-Activity Relationships of Novel Macrolones: Hybrids of 2-Fluoro 9-Oxime Ketolides and Carbamoyl Quinolones with Highly Improved Activity against Resistant Pathogens. European Journal of Medicinal Chemistry, 169, 1-20.
https://doi.org/10.1016/j.ejmech.2019.02.073
[195]  Kobrehel, G., Lazarevski, G. and Vinkovic, M. (PLIVA) (1999) Novel 3,6-Hemiketals from the Class of 9a-Azalides. WO-09920639.
[196]  Denis, A. and Agouridas, C. (1998) Synthesis of 6-O-Methyl-Azithromycin and Its Ketolide Analogue via Beckmann Rearrangement of 9(E)-6-O-Methyl-Erythromycin Oxime. Bioorganic & Medicinal Chemistry Letters, 8, 2427-2432.
https://doi.org/10.1016/S0960-894X(98)00402-8
[197]  Or, Y.S., Keyes, R.F. and Ma, Z. (2004) 9a-Azalides with Antibacterial Activity. US Patent No. 6764996.
[198]  Mutak, S. (2007) Azalides from Azithromycin to New Azalide Derivatives. The Journal of Antibiotics, 60, 85-122.
https://doi.org/10.1038/ja.2007.10
[199]  Jia, L., Wang, Y., Wang, Y., Qin, Y., Hu, C., Sheng, J. and Ma, S. (2018) Synthesis and Antibacterial Evaluation of Novel 11-O-Aralkylcarbamoyl-3-ODescladinosyl-clarithromycin Derivatives. Bioorganic & Medicinal Chemistry Letters, 28, 2471-2476.
https://doi.org/10.1016/j.bmcl.2018.06.006
[200]  Myers, A.G., Seiple, I.B. and Zhang, Z. (2018) Macrolides with Modified Desosamine Sugars and Uses Thereof. US Patent No. 20180066008A1.
[201]  Janas, A. and Przybylski, P. (2019) 14- and 15-Membered Lactone Macrolides and Their Analogues and Hybrids: Structure, Molecular Mechanism of Action and Biological Activity. European Journal of Medicinal Chemistry, 182, ArticleID: 111662.
https://doi.org/10.1016/j.ejmech.2019.111662
[202]  Sugimoto, T., Tanikawa, T., Suzuki, K. and Yamasaki, Y. (2012) Synthesis and Structure-Activity Relationship of a Novel Class of 15-Membered Macrolide Antibiotics Known as “11a-Azalides”. Bioorganic & Medicinal Chemistry, 20, 5787-5801.
https://doi.org/10.1016/j.bmc.2012.08.007
[203]  Rossiter, S.E., Fletcher, M.H. and Wuest, W.M. (2017) Natural Products as Platforms to Overcome Antibiotic Resistance. Chemical Reviews, 117, 12415-12474.
https://doi.org/10.1021/acs.chemrev.7b00283
[204]  Lazarevski, G., Kobrehel, G. and Kelneric, Z. (PLIVA) (1994) 15-Membered Lactams Ketolides with Antibacterial Activity. WO 99/51616.
[205]  Alihodzic, S., Fajdetic, A., Kobrehel, G., Lazarevski, G., Mutak, S., Pavlovic, D., Stimac, V., Cipcic, H., Kramaric, M. D., Erakovic, V., Hasenöhrl, A., Marsic, N. and Schoenfeld, W. (2006) Synthesis and Antibacterial Activity of Isomeric 15-Membered Azalides. The Journal of Antibiotics, 59, 753-769.
https://doi.org/10.1038/ja.2006.100
[206]  Pavlović, D. and Mutak, S. (2010) Synthesis and Structure-Activity Relationships of Novel 8a-Aza-8a-Homoerythromycin A Ketolides. Journal of Medicinal Chemistry, 53, 5868-5880.
https://doi.org/10.1021/jm100711p Pavlović, D., Fajdetić, A. and Mutak, S. (2010) Novel Hybrids of 15-Membered 8a- and 9a-Azahomoerythromycin A Ketolides and Quinolones as Potent Antibacterials. Bioorganic & Medicinal Chemistry, 18, 8566-8582.
https://doi.org/10.1016/j.bmc.2010.10.024
[207]  Xu, G., Tang, D., Gai, Y., Wang, G., Kim, H., Chen, Z. and Wang, Z. (2010) An Efficient Large-Scale Synthesis of EDP-420, a First-in-Class Bridged Bicyclic Macrolide (BBM) Antibiotic Drug Candidate. Organic Process Research & Development 2010, 14, 504-510.
https://doi.org/10.1021/op900228u
[208]  Bermudez, L.E., Motamedi, N., Chee, C., Baimukanova, G., Kolonoski, P., Inderlied, C., Aralar, P., Wang, G., Phan, L.T. and Young, L.S. (2007) EDP-420, a Bicyclolide (Bridged Bicyclic Macrolide), Is Active against Mycobacterium avium. Antimicrobial Agents and Chemotherapy, 51, 1666-1670.
https://doi.org/10.1128/AAC.01303-06
[209]  Sato, T., Tateda, K., Kimura, S., Iwata, M., Ishii, Y. and Yamaguchi, K. (2011) In Vitro Antibacterial Activity of Modithromycin, a Novel 6,11-Bridged Bicyclolide, Against Respiratory Pathogens, Including Macrolide-Resistant Gram-Positive Cocci. Antimicrobial Agents and Chemotherapy, 55, 1588-1593.
https://doi.org/10.1128/AAC.01469-10
[210]  Jacobsson, S., Golparian, D., Phan, L.T., Ohnishi, M., Fredlund, H., Or, Y.S. and Unemo, M. (2015) In Vitro Activities of the Novel Bicyclolides Modithromycin (EDP-420, EP-013420, S-013420) and EDP-322 against MDR Clinical Neisseria Gonorrhoeae Isolates and International Reference Strains. The Journal of Antimicrobial Chemotherapy, 70, 173-177.
https://doi.org/10.1093/jac/dku344
[211]  Jiang, L.J., Wang, M. and Or, Y.S. (2009) Pharmacokinetics of EDP-420 after Ascending Single Oral Doses in Healthy Adult Volunteers. Antimicrobial Agents and Chemotherapy, 53, 1786-1792.
https://doi.org/10.1128/AAC.01270-08
[212]  Maglio, D., Sun, H.K., Patel, T., Banevicius, M.A., Nightingale, C.H., Arya, A., Wang, G., Chen, Z., Phan, L.T. and Nicolau, D.P. (2014) Pharmacodynamic Profiling of Modithromycin: Assessment in a Pneumococcal Murine Pneumonia Model. International Journal of Antimicrobial Agents, 43, 540-546.
https://doi.org/10.1016/j.ijantimicag.2014.01.029
[213]  Kim, I.J., Liu, T., Qiu, Y.L., Phan, L.T. and Or, Y.S. (2009) 6,11-Bicyclolides: Bridged Biaryl Macrolide Derivatives. US Patent No. 20090075915A1
[214]  Kashimura, M., Asaka, T., Misawa, Y., Matsumoto, K. and Morimoto, S. (2001) Synthesis and Antibacterial Activity of the Tricyclic Ketolides TE-802 and Its Analogs. The Journal of Antibiotics, 54, 664-678.
[215]  Kashimura, M., Matsumoto, K. and Asaka, T. (2004) Conformational Analysis of Tricyclic Ketolide TE-802 and Its Analogues. Heterocycles, 63, 2057-2070.
https://doi.org/10.3987/COM-04-10161
[216]  Ono, T., Kashimura, M., Suzuki, K., Oyauchi, R., Miyachi, J., Ikuta, H., Kawauchi, H., Akashi, T., Asaka, T. and Morimoto, S. (2004) In Vitro and in Vivo Antibacterial Activities of the Tricyclic Ketolide TE-802 and Its Analogs. The Journal of Antibiotics, 57, 518-527.
[217]  Phan, L.T., Or, Y.S., Chen, Y., Chu, D.T.W., Ewing, P., Nilius, A.M., Bui, M.H., Raney, P.M., Hensey-Rudloff, D., Mitten, M., Henry, R.F. and Plattner, J.J. (1998) 2-Substituted Tricyclic Ketolides, New Antibacterial Macrolides. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA.
[218]  Phan, L.T., Or, Y.S., Spina, K.P., Chen, Y., Tufano, M., Chu, D.T.W., Nilius, A.M., Bui, M.H. and Plattner, J.J. (1996) Tetracyclic Ketolides: New Antibacterial Macrolides. Synthesis and In Vitro Antibacterial Activity. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto.
[219]  Or, Y.S., Phan, L.T., Chu, D.T., Spina, K.P., Hallas, R., Elliott, R.L. and Tufano, M. (2001) Tricyclic Erythromycin Derivatives. US. Patent No. 6274715B1.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133