全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Scanning Electron Microscopy and Kinetic Studies of Ketene-Acetylated Wood/Cellulose High-Density Polyethylene Blends

DOI: 10.1155/2012/456491

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acetylated cellulose and wood cellulose as well as untreated cellulose polyethylene blends were subjected to kinetic studies using water, 0.5?M NaOH, and 0.5?M HCl solutions in order to investigate their absorbent properties at 0.5/1.0 cellulose/wood cellulose/polyethylene matrix. The results of the absorption studies showed that the untreated cellulose and wood cellulose blends absorbed water and the acid and alkali solutions higher than the treated samples, which showed a reduction in acid, alkali, and water uptake. In this work, the effects of acetylation on the morphological studies of the polyethylene blends were obvious. The presence of acetyl groups improved the interfacial bonding between the polymer matrix and cellulose as well as the wood cellulose fibers, as evidenced by scanning electron microscopy (SEM). 1. Introduction A better understanding of the chemical composition and surface properties/chemistry of natural fibers is necessary for ease of developing natural fiber-reinforced composites/blends. Cellulose is the most abundant biopolymer in nature and its biosynthesis, chemistry, and ultrastructure remain an active field of study. Over the past decades, the interest in sustainability and green chemistry has led to a renewed interest in novel cellulosic materials and composites derived from a variety of cellulosic materials [1]. Cellulose is a homopolysaccharide which is a highly stable chain composed of 12,000 of?? -D-glucopyranose monomeric units linked together by covalently bonded?? ?→?4-glycosidic linkages in long chains, resulting in bundles known as microfibrils that can be easily cleaved by mineral acids [2, 3]. Each?? -D-glucopyranose unit is oriented at an angle of 180° from the succeeding glucose unit [2]. Native cellulose is composed of amorphous and crystalline domains. The crystalline domains are highly ordered and much more stable to acid hydrolysis compared to their amorphous counterparts [3]. Native cellulose based materials (wood, hemp, cotton, linen, etc.) have been used as construction materials [4, 5]. Cellulose is the basic structural component of all plant fibers, the most important organic biopolymer produced by plants and the most abundant renewable polymer resource available today worldwide [6]. Cellulose is a polymer raw material which has served mankind as a construction material, mainly in the form of solid wood and textile fibers, such as cotton or flax, or in the form of paper and board for many decades. On the other hand, cellulose is a versatile starting material for chemical conversions aiming at the

References

[1]  J. Zhang, T. J. Elder, Y. Pu, and A. J. Ragauskas, “Facile synthesis of spherical cellulose nanoparticles,” Carbohydrate Polymers, vol. 69, no. 3, pp. 607–611, 2007.
[2]  H. B. T. Abdulaziz, Reactive extraction of sugars from oil palm fruit bunch hydrolysate using naphthalene-2-boronic acid [M.S. thesis], Graduate Faculty Universiti of Sains Malaysia, 2007.
[3]  A. Yakubu, T. M. Umar, and S. S. D. Mohammed, “Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry,” Advances in Applied Science Research, vol. 2, no. 6, pp. 532–540, 2011.
[4]  G. Rodionova, M. Lenes, ?. Eriksen, and ?. Gregersen, “Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications,” Cellulose, vol. 18, no. 1, pp. 127–134, 2011.
[5]  R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, “Cellulose nanomaterials review: structure, properties and nanocomposites,” Chemical Society Reviews, vol. 40, no. 7, pp. 3941–3994, 2011.
[6]  M. Sercer, P. Raos, and M. Rujnic-Sokele, Processing of wood-thermoplastic composites, http://www.jobwerks.com/news/Archives/iwpc.pdf.
[7]  A. Biswas, B. C. Saha, J. W. Lawton, R. L. Shogren, and J. L. Willett, “Process for obtaining cellulose acetate from agricultural by-products,” Carbohydrate Polymers, vol. 64, no. 1, pp. 134–137, 2006.
[8]  G. A. Olatunji, “The eighty-eight inaugural lecture,” in Journey to the Promised Land: The Travails of an Organic Chemist, p. 17, Department of Chemistry, Faculty of Science, University of Ilorin, Ilorin, Nigeria, 2009.
[9]  B. Mohebby, “Application of ATR infrared spectroscopy in wood acetylation,” Journal of Agricultural Science and Technology, vol. 10, no. 3, pp. 253–259, 2008.
[10]  L. M. Ilharco, A. R. Garcia, J. Lopes da Silva, and L. F. Vieira Ferreira, “Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone,” Langmuir, vol. 13, no. 15, pp. 4126–4132, 1997.
[11]  I. Filpponen, The synthetic strategies for unique properties in cellulose nanocrystals materials [Ph.D. thesis of Philosophy], Graduate Faculty of North Carolina State University, Wood & Paper Science, Raleigh, NC, USA, 2009.
[12]  A. K. Bledzki, A. A. Mamun, M. Lucka-Gabor, and V. S. Gutowski, “The effects of acetylation on properties of flax fibre and its polypropylene composites,” Express Polymer Letters, vol. 2, no. 6, pp. 413–422, 2008.
[13]  A. Yakubu, G. A. Olatunji, O. Sunday, and A. Olubunmi, “Ketene acetylated wood cellulose for industrial applications in wood-base and polymer industry,” Journal of Environmental Science and Technology, vol. 5, no. 3, pp. 168–176, 2012.
[14]  G. T. Ciacco, D. L. Morgado, E. Frollini, S. Possidonio, and O. A. El Seoud, “Some aspects of acetylation of untreated and mercerized sisal cellulose,” Journal of the Brazilian Chemical Society, vol. 21, no. 1, pp. 71–77, 2010.
[15]  S. Samira, A. I. Nor, A. Sanaz, W. Y. Wan Md Zin, and A. R. M. Zaki, “Effects of fibre esterification on fundamental properties of oil palm empty fruit bunch fibre/poly (butylenes adipate-co-terephthalate) biocomposites,” International Journal of Molecular Sciences, vol. 13, no. 2, pp. 1327–1346, 2012.
[16]  S. Kamel, “Nanotechnology and its applications in lignocellulosic composites, a mini review,” Express Polymer Letters, vol. 1, no. 9, pp. 546–575, 2007.
[17]  R. M. Rowell, R. H. S. Wang, and J. A. Hyatt, “Flakeboards made from Aspen and Southern Pine Wood flakes Reacted with Ketene,” Journal of Wood Chemistry and Technology, vol. 6, no. 3, pp. 449–471, 1986.
[18]  A. G. Supri and B. Y. Lim, “Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites,” Journal of Physical Science, vol. 20, no. 2, pp. 85–96, 2009.
[19]  S. A. Abdulkareem and B. Garba, “Novel application of polymer dissolution technique,” Nigerian Journal of Pure and Applied Sciences, vol. 20, pp. 1799–1485, 2005.
[20]  J. George, S. S. Bhagawan, and S. Thomas, “Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre,” Composites Science and Technology, vol. 58, no. 9, pp. 1471–1485, 1998.
[21]  V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, “A study of the effect of acetylation and propionylation surface treatments on natural fibres,” Composites A, vol. 36, no. 8, pp. 1110–1118, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413