全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High-Performance Anion-Exchange Chromatography Coupled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohydrates of Food Interest: Principles and Applications

DOI: 10.1155/2012/487564

Full-Text   Cite this paper   Add to My Lib

Abstract:

Specific HPLC approaches are essential for carbohydrate characterization in food products. Carbohydrates are weak acids with pKa values in the range 12–14 and, consequently, at high pH can be transformed into oxyanions, and can be readily separated using highly efficient anion-exchange columns. Electrochemical detection in HPLC has been proven to be a powerful analytical technique for the determination of compounds containing electroactive groups; pulsed amperometric detection of carbohydrates is favourably performed by taking advantage of their electrocatalytic oxidation mechanism at a gold working electrode in a basic media. High-performance Anion Exchange Chromatography (HPAEC) at high pH coupled with pulsed electrochemical detection (PED) is one of the most useful techniques for carbohydrate determination either for routine monitoring or research application. This technique has been of a great impact on the analysis of oligo- and polysaccharides. The compatibility of electrochemical detection with gradient elution, coupled with the high selectivity of the anion-exchange stationary phases, allows mixtures of simple sugars, oligo- and polysaccharides to be separated with high resolution in a single run. A few reviews have been written on HPAEC-PED of carbohydrates of food interest in the last years. In this paper the recent developments in this field are examined. 1. Introduction The analysis of carbohydrates in food has extreme nutritional importance because they are a primary source of energy and have healthy beneficial effects resulting mainly from dietary fibers and other unavailable carbohydrates resistant to digestion. In food industry they are largely used as technological coadjuvants in order to obtain physicochemical and selected sensorial characteristics for some products. Moreover, they are suitable to be considered as markers for quality and authenticity control. Several analytical techniques have been proposed for carbohydrates analysis; among them, high-performance liquid chromatography (HPLC) coupled to different detection systems. This technique offers the advantages of high resolution, fast analysis, direct injection of the sample without or with little pretreatment, and easy of automation. Different operation modes of HPLC have been applied to the analysis of carbohydrates of food interest. HPLC of carbohydrates is frequently performed using cation-exchange resins based on copolymers in protonated or metal ion forms. Metal-loaded strong cation exchangers such as sulphonated styrene-divinylbenzene copolymers in calcium, lithium,

References

[1]  C. G. Huber and G. K. Bonn, “HPLC of carbohydrates with cation and anion-exchange silica and resin-based stationary phases,” in Carbohydrate Analysis, Journal of Chromatography Library, Z. El Rassi, Ed., vol. 58, pp. 147–180, Elsevier, Amsterdam, The Netherlands, 1995.
[2]  W. R. LaCourse, “Ion chromatography in food analysis,” in Handbook of Food Analysis Instruments, S. Otles, Ed., pp. 161–196, CRC press, Taylor and Francis Group, 2009.
[3]  F. N. Lamari, R. Kuhn, and N. K. Karamanos, “Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis,” Journal of Chromatography B, vol. 793, no. 1, pp. 15–36, 2003.
[4]  T. J. Paskach, H. P. Lieker, P. J. Reilly, and K. Thielecke, “High-performance anion-exchange chromatography of sugars and sugar alcohols on quarternary ammonium resins under alkaline conditions,” Carbohydrate Research, vol. 215, no. 1, pp. 1–14, 1991.
[5]  T. R. I. Cataldi, G. Margiotta, and C. G. Zambonin, “Determination of sugars and alditols in food samples by HPAEC with integrated pulsed amperometric detection using alkaline eluents containing barium or strontium ions,” Food Chemistry, vol. 62, no. 1, pp. 109–115, 1998.
[6]  C. Corradini, D. Corradini, C. G. Huber, and G. K. Bonn, “Synthesis of a polymeric-based stationary phase for carbohydrate separation by high-pH anion-exchange chromatography with pulsed amperometric detection,” Journal of Chromatography A, vol. 685, no. 2, pp. 213–220, 1994.
[7]  K. S. Wong and J. Jane, “Effects of pushing agents on the separation and detection of debranched amylopectin by high-performance anion-exchange chromatography with pulsed amperometric detection,” Journal of Liquid Chromatography, vol. 18, no. 1, pp. 63–80, 1995.
[8]  C. Borromei, A. Cavazza, C. Merusi, and C. Corradini, “Characterization and quantitation of short-chain fructooligosaccharides and inulooligosaccharides in fermented milks by high-performance anion-exchange chromatography with pulsed amperometric detection,” Journal of Separation Science, vol. 32, no. 21, pp. 3635–3642, 2009.
[9]  V. Morales, N. Corzo, and M. L. Sanz, “HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups,” Food Chemistry, vol. 107, no. 2, pp. 922–928, 2008.
[10]  L. Hask?, M. Nyman, and R. Andersson, “Distribution and characterisation of fructan in wheat milling fractions,” Journal of Cereal Science, vol. 48, no. 3, pp. 768–774, 2008.
[11]  M. Trojanowicz, “Recent developments in electrochemical flow detections—a review—part II. Liquid chromatography,” Analytica Chimica Acta, vol. 688, no. 1, pp. 8–35, 2011.
[12]  W. R. LaCourse, “Origins of pulsed potential cleaning,” in Pulsed Electrochemical Detection in High Performance Liquid Chromatography, pp. 6–8, John Wiley & Sons, New York, NY, USA, 1997.
[13]  S. Hughes, P. Lawrence Meschi, and D. C. Johnson, “Amperometric detection of simple alcohols in aqueous solutions by application of a triple-pulse potential waveform at platinum electrodes,” Analytica Chimica Acta, vol. 132, no. C, pp. 1–10, 1981.
[14]  S. Hughes and D. C. Johnson, “Amperometric detection of simple carbohydrates at platinum electrodes in alkaline solutions by application of a triple-pulse potential waveform,” Analytica Chimica Acta, vol. 132, no. C, pp. 11–22, 1981.
[15]  D. C. Johnson and W. R. LaCourse, “Pulsed electrochemical detection of carbohydrates at gold electrodes following liquid chromatographic separation,” in Carbohydrate Analysis, Journal of Chromatography Library, Z. El Rassi, Ed., vol. 58, pp. 391–429, Elsevier, Amsterdam, The Netherlands, 1995.
[16]  D. C. Johnson and W. R. LaCourse, “Pulsed electrochemical detection at noble metal electrodes in liquid chromatography,” Electroanalysis, vol. 4, pp. 367–380, 1992.
[17]  R. D. Rocklin, A. P. Clarke, and M. Weitzhandler, “Improved long-term reproducibility for pulsed amperometric detection of carbohydrates via a new quadruple-potential waveform,” Analytical Chemistry, vol. 70, no. 8, pp. 1496–1501, 1998.
[18]  T. R. I. Cataldi, C. Campa, and G. E. De Benedetto, “Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing,” Fresenius' Journal of Analytical Chemistry, vol. 368, no. 8, pp. 739–758, 2000.
[19]  Z. El Rassi, “Carbohydrate analysis by modern chromatography and electrophoresis,” in Journal of Chromatography Library, Z. El Rassi, Ed., vol. 66, Elsevier Science, Amsterdam, The Netherlands, 2002.
[20]  A. Cardelle-Cobas, N. Corzo, M. Villamiel, and A. Olano, “Isomerization of lactose-derived oligosaccharides: a case study using sodium aluminate,” Journal of Agricultural and Food Chemistry, vol. 56, no. 22, pp. 10954–10959, 2008.
[21]  M. Brokl, O. Hernández-Hernández, A. C. Soria, and M. L. Sanz, “Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides,” Journal of Chromatography A, vol. 1218, no. 42, pp. 7697–7703, 2011.
[22]  A. ávila-Fernández, N. Galicia-Lagunas, M. E. Rodríguez-Alegría, C. Olvera, and A. López-Munguía, “Production of functional oligosaccharides through limited acid hydrolysis of agave fructans,” Food Chemistry, vol. 129, no. 2, pp. 380–386, 2011.
[23]  N. Ravenscroft, P. Cescutti, M. A. Hearshaw, R. Ramsout, R. Rizzo, and E. M. Timme, “Structural analysis of fructans from agave americana grown in South Africa for spirit production,” Journal of Agricultural and Food Chemistry, vol. 57, no. 10, pp. 3995–4003, 2009.
[24]  J. Arrizon, S. Morel, A. Gschaedler, and P. Monsan, “Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages,” Food Chemistry, vol. 122, no. 1, pp. 123–130, 2010.
[25]  S. N. Ronkart, C. S. Blecker, H. Fourmanoir et al., “Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis,” Analytica Chimica Acta, vol. 604, no. 1, pp. 81–87, 2007.
[26]  R. G. Der Agopian, C. A. Soares, E. Purgatto, B. R. Cordenunsi, and F. M. Lajolo, “Identification of fructooligosaccharides in different banana cultivars,” Journal of Agricultural and Food Chemistry, vol. 56, no. 9, pp. 3305–3310, 2008.
[27]  D. H. Yoo, B. H. Lee, P. S. Chang, G. L. Hyeon, and S. H. Yoo, “Improved quantitative analysis of oligosaccharides from lichenase-hydrolyzed water-soluble barley β-glucans by high-performance anion-exchange chromatography,” Journal of Agricultural and Food Chemistry, vol. 55, no. 5, pp. 1656–1662, 2007.
[28]  J. Treimo, B. Westereng, S. J. Horn et al., “Enzymatic solubilization of brewers' spent grain by combined action of carbohydrases and peptidases,” Journal of Agricultural and Food Chemistry, vol. 57, no. 8, pp. 3316–3324, 2009.
[29]  M. Mosca, C. Boniglia, B. Carratù, S. Giammarioli, V. Nera, and E. Sanzini, “Determination of α-amylase inhibitor activity of phaseolamin from kidney bean (Phaseolus vulgaris) in dietary supplements by HPAEC-PAD,” Analytica Chimica Acta, vol. 617, no. 1-2, pp. 192–195, 2008.
[30]  N. Kawazoe, H. Okada, E. Fukushi et al., “Two novel oligosaccharides isolated from a beverage produced by fermentation of a plant extract,” Carbohydrate Research, vol. 343, no. 3, pp. 549–554, 2008.
[31]  H. Okada, E. Fukushi, A. Yamamori et al., “Novel fructopyranose oligosaccharides isolated from fermented beverage of plant extract,” Carbohydrate Research, vol. 345, no. 3, pp. 414–418, 2010.
[32]  H. Okada, E. Fukushi, A. Yamamori et al., “Isolation and structural confirmation of the oligosaccharides containing α-d-fructofuranoside linkages isolated from fermented beverage of plant extracts,” Carbohydrate Research, vol. 346, no. 16, pp. 2633–2637, 2011.
[33]  C. Martínez-Villaluenga, A. Cardelle-Cobas, N. Corzo, and A. Olano, “Study of galactooligosaccharide composition in commercial fermented milks,” Journal of Food Composition and Analysis, vol. 21, no. 7, pp. 540–544, 2008.
[34]  C. Borromei, M. Careri, A. Cavazza, et al., “Evaluation of fructooligosaccharides and inulins as potentially health benefiting food ingredients by HPAEC-PED and MALDI-TOF MS,” International Journal of Analytical Chemistry, vol. 2009, Article ID 530639, 9 pages, 2009.
[35]  C. Borromei, A. Cavazza, C. Corradini et al., “Validated HPAEC-PAD method for prebiotics determination in synbiotic fermented milks during shelf life,” Analytical and Bioanalytical Chemistry, vol. 397, no. 1, pp. 127–135, 2010.
[36]  M. Feinberg, J. San-Redon, and A. Assié, “Determination of complex polysaccharides by HPAE-PAD in foods: validation using accuracy profile,” Journal of Chromatography B, vol. 877, no. 23, pp. 2388–2395, 2009.
[37]  M. Blanch, M. T. Sanchez-Ballesta, M. I. Escribano, and C. Merodio, “Fructo-oligosaccharides in table grapes and response to storage,” Food Chemistry, vol. 129, no. 3, pp. 724–730, 2011.
[38]  V. Morales, M. L. Sanz, A. Olano, and N. Corzo, “Rapid separation on activated charcoal of high oligosaccharides in honey,” Chromatographia, vol. 64, no. 3-4, pp. 233–238, 2006.
[39]  S. Ouchemoukh, P. Schweitzer, M. Bachir Bey, H. Djoudad-Kadji, and H. Louaileche, “HPLC sugar profiles of Algerian honeys,” Food Chemistry, vol. 121, no. 2, pp. 561–568, 2010.
[40]  M. Megherbi, B. Herbreteau, R. Faure, and A. Salvador, “Polysaccharides as a marker for detection of corn sugar syrup addition in honey,” Journal of Agricultural and Food Chemistry, vol. 57, no. 6, pp. 2105–2111, 2009.
[41]  P. Girard, P. St?ber, M. Blanc, and J. Prodolliet, “Carbohydrate specification limits for the authenticity assessment of soluble (Instant) Coffee: statistical approach,” Journal of the Association of Official Agricultural Chemists, vol. 89, no. 4, pp. 999–1003, 2006.
[42]  S. Albrecht, G. C. J. Van Muiswinkel, H. A. Schols, A. G. J. Voragen, and H. Gruppen, “Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior,” Journal of Agricultural and Food Chemistry, vol. 57, no. 9, pp. 3867–3876, 2009.
[43]  A. Cavazza, C. Corradini, M. Giannetto, R. Greco, G. Mori, and T. Vicchio, “Studio del profilo di fruttooligosaccaridi in cipolle di diversa cultivar mediante HPAEC-PAD: valutazione chemiometrica,” in Proceedings of the VIII Congresso Nazionale di Chimica degli Alimenti, pp. 550–553, Marsala, Italy, 2010.
[44]  L. Coulier, J. Timmermans, B. Richard et al., “In-depth characterization of prebiotic galactooligosaccharides by a combination of analytical techniques,” Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. 8488–8495, 2009.
[45]  J. Patindol, Y. J. Wang, and J. L. Jane, “Structure-functionality changes in starch following rough rice storage,” Starch/Staerke, vol. 57, no. 5, pp. 197–207, 2005.
[46]  J. Patindol, L. Wang, and Y. J. Wang, “Cellulase-assisted extraction of oligosaccharides from defatted rice bran,” Journal of Food Science, vol. 72, no. 9, pp. C516–C521, 2007.
[47]  P. Gullón, P. Moura, M. P. Esteves, F. M. Girio, H. Domínguez, and J. C. Parajó, “Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 7482–7487, 2008.
[48]  P. Gullón, M. J. González-Mu?oz, M. P. van Gool et al., “Production, refining, structural characterization and fermentability of rice husk xylooligosaccharides,” Journal of Agricultural and Food Chemistry, vol. 58, no. 6, pp. 3632–3641, 2010.
[49]  E. Giannoccaro, Y. J. Wang, and P. Chen, “Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars,” Food Chemistry, vol. 106, no. 1, pp. 324–330, 2008.
[50]  E. M. Bainy, S. M. Tosh, M. Corredig, V. Poysa, and L. Woodrow, “Varietal differences of carbohydrates in defatted soybean flour and soy protein isolate by-products,” Carbohydrate Polymers, vol. 72, no. 4, pp. 664–672, 2008.
[51]  D. N. A. Zaidel, A. Arnous, J. Holck, and A. S. Meyer, “Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet,” Journal of Agricultural and Food Chemistry, vol. 59, no. 21, pp. 11598–11607, 2011.
[52]  J. Holck, A. Lorentzen, L. K. Vigsn?s, T. R. Licht, J. D. Mikkelsen, and A. S. Meyer, “Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet pectin selectively stimulate the growth of bifidobacterium spp. In human fecal in vitro fermentations,” Journal of Agricultural and Food Chemistry, vol. 59, no. 12, pp. 6511–6519, 2011.
[53]  M. Martínez, B. Gullón, R. Yá?ez, J. L. Alonso, and J. C. Parajó, “Direct enzymatic production of oligosaccharide mixtures from sugar beet pulp: experimental evaluation and mathematical modeling,” Journal of Agricultural and Food Chemistry, vol. 57, no. 12, pp. 5510–5517, 2009.
[54]  Y. Westphal, S. Kühnel, P. de Waard et al., “Branched arabino-oligosaccharides isolated from sugar beet arabinan,” Carbohydrate Research, vol. 345, no. 9, pp. 1180–1189, 2010.
[55]  C. M. Courtin, K. Swennen, P. Verjans, and J. A. Delcour, “Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides,” Food Chemistry, vol. 112, no. 4, pp. 831–837, 2009.
[56]  L. Virkki, H. N. Maina, L. Johansson, and M. Tenkanen, “New enzyme-based method for analysis of water-soluble wheat arabinoxylans,” Carbohydrate Research, vol. 343, no. 3, pp. 521–529, 2008.
[57]  S. Kolida, K. Tuohy, and G. R. Gibson, “Prebiotic effects of inulin and oligofructose,” British Journal of Nutrition, vol. 87, no. 2, pp. S193–S197, 2002.
[58]  C. Corradini, F. Bianchi, D. Matteuzzi, A. Amoretti, M. Rossi, and S. Zanoni, “High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin,” Journal of Chromatography A, vol. 1054, no. 1-2, pp. 165–173, 2004.
[59]  M. Rossi, C. Corradini, A. Amaretti et al., “Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures,” Applied and Environmental Microbiology, vol. 71, no. 10, pp. 6150–6158, 2005.
[60]  F. Abballe, M. Toppazzini, C. Campa, F. Uggeri, and S. Paoletti, “Study of molar response of dextrans in electrochemical detection,” Journal of Chromatography A, vol. 1149, no. 1, pp. 38–45, 2007.
[61]  E. Chiavaro, E. Vittadini, and C. Corradini, “Physicochemical characterization and stability of inulin gels,” European Food Research and Technology, vol. 225, no. 1, pp. 85–94, 2007.
[62]  N. Merendino, M. D'Aquino, R. Molinari et al., “Chemical characterization and biological effects of immature durum wheat in rats,” Journal of Cereal Science, vol. 43, no. 2, pp. 129–136, 2006.
[63]  M. Raessler, B. Wissuwa, A. Breul, W. Unger, and T. Grimm, “Determination of water-extractable nonstructural carbohydrates, including inulin, in grass samples with high-performance anion exchange chromatography and pulsed amperometric detection,” Journal of Agricultural and Food Chemistry, vol. 56, no. 17, pp. 7649–7654, 2008.
[64]  C. Corradini, G. Canali, and I. Nicoletti, “Application of HPAEC-PAD to carbohydrate analysis in food products and fruit juices,” Seminars in Food Analysis, vol. 2, pp. 99–111, 1997.
[65]  K. T. Tang, L. N. Liang, Y. Q. Cai, and S. F. Mou, “Determination of sialic acid in milk and products using high performance anion-exchange chromatography coupled with pulsed amperometric detection,” Fenxi Huaxue/ Chinese Journal of Analytical Chemistry, vol. 36, no. 11, pp. 1535–1538, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413