全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Current Operative Management of Breast Cancer: An Age of Smaller Resections and Bigger Cures

DOI: 10.1155/2012/516417

Full-Text   Cite this paper   Add to My Lib

Abstract:

Surgical resection was the first effective treatment for breast cancer and remains the most important treatment modality for curative intent. Refinements in operative techniques along with the use of adjuvant radiotherapy and advanced chemotherapeutic agents have facilitated increasingly focused breast cancer operations. Surgical management of breast cancer has shifted from extensive and highly morbid procedures, to the modern concept obtaining the best possible cosmetic result in tandem with the appropriate oncological resection. An ever-growing comprehension of breast cancer biology has led to substantial advances in molecular diagnosis and targeted therapies. An emerging frontier involves the breast cancer microenvironment, as a thorough understanding, while currently lacking, represents a critical opportunity for diagnosis and treatment. Collectively, these improvements will continue to push all therapeutic interventions, including operative, toward the goal of becoming more focused, targeted, and less morbid. 1. Introduction Breast cancer is the most frequently diagnosed nondermatological malignancy in women and ranks second only to lung in cancer-related deaths [1]. While the incidence has increased over the past decade, (Figures 1(a) and 1(b)) the mortality rate of breast cancer has gradually declined [2, 3] (Figure 2). This improved survival may stem from earlier detection as well as improved therapies [2, 3]. Figure 1: Incidence rates of In situ (a) and Invasive (b) female breast cancer in the United States (1975–2008). American Cancer Society. Breast Cancer Facts and Figures 2011-2012. Atlanta: American Cancer Society, Inc. Figure 2: Mortality rate of female breast cancer, by race and ethnicity (1975–2007). American Cancer Society. Breast Cancer Facts and Figures 2011-2012. Atlanta: American Cancer Society, Inc. Surgical resection was one of the first effective treatments for breast cancer and continues to play a critical role in the treatment of this disease. A multidisciplinary approach is now standard of care, involving a coordinated effort with the surgeon working in concert with the medical and radiation oncologist to achieve the best possible outcome for each individual. Improvements in both the quality and quantity of life for victims of breast cancer can be attributed to the advances made in each of these disciplines. As with all cancers, earlier stage disease is more readily manageable than after significant advancement. It is these early-stage cancers in which the most significant improvements in the operative management has

References

[1]  American Cancer Society, Cancer Facts & Figures, American Cancer Society, Atlanta, Ga, USA, 2011.
[2]  N Howlader, A Noone, M. Krapcho, et al., “SEER Cancer Statistics Review, 1975–2008,” National Cancer Institute. Bethesda, Md, USA, November 2010, http://seer.cancer.gov/csr/1975_2008/.
[3]  American Cancer Society, Breast Cancer Facts & Figures 2011-2012, American Cancer Society, Atlanta, Ga, USA, 2012.
[4]  G. H. Sakorafas and M. Safioleas, “Breast cancer surgery: an historical narrative. Part I. from prehistoric times to Renaissance,” European Journal of Cancer Care, vol. 18, no. 6, pp. 530–544, 2009.
[5]  G. H. Sakorafas and M. Safioleas, “Breast cancer surgery: an historical narrative. Part III. From the sunset of the 19th to the dawn of the 21st century,” European Journal of Cancer Care, vol. 19, no. 2, pp. 145–166, 2010.
[6]  M. G. Berry, A. D. Fitoussi, A. Curnier, B. Couturaud, and R. J. Salmon, “Oncoplastic breast surgery: a review and systematic approach,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 63, no. 8, pp. 1233–1243, 2010.
[7]  R. W. Carlson, D. C. Allred, B. O. Anderson et al., “Invasive breast cancer: clinical practice guidelines in oncology,” JNCCN Journal of the National Comprehensive Cancer Network, vol. 9, no. 2, pp. 136–222, 2011.
[8]  M. Morrogh, “Breast-conserving surgery,” in Kuerer’s Breast Surgical Oncology, H. M. Kuerer, Ed., chapter 61, McGraw-Hill, 2010.
[9]  HB Neuman and K. J. Van Zee, “Axillary lymph node dissection,” in Kuerer’s Breast Surgical Oncology, H. M. Kuerer, Ed., chapter 63, McGraw-Hill, 2010.
[10]  B. A. Virnig, T. M. Tuttle, T. Shamliyan, and R. L. Kane, “Ductal carcinoma in Situ of the breast: a systematic review of incidence, treatment, and outcomes,” Journal of the National Cancer Institute, vol. 102, no. 3, pp. 170–178, 2010.
[11]  R. W. Carlson, D. C. Allred, B. O. Anderson et al., “Breast cancer: Noninvasive and special situations,” Journal of the National Comprehensive Cancer Network, vol. 8, no. 10, pp. 1182–1207, 2010.
[12]  I. Makhoul and E. Kiwan, “Neoadjuvant systemic treatment of breast cancer,” Journal of Surgical Oncology, vol. 103, no. 4, pp. 348–357, 2011.
[13]  M. C. Green, A. U. Buzdar, T. Smith et al., “Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks,” Journal of Clinical Oncology, vol. 23, no. 25, pp. 5983–5992, 2005.
[14]  E. Montagna, V. Bagnardi, N. Rotmensz et al., “Pathological complete response after preoperative systemic therapy and outcome: relevance of clinical and biologic baseline features,” Breast Cancer Research and Treatment, vol. 124, no. 3, pp. 689–699, 2010.
[15]  M. Tanioka, C. Shimizu, K. Yonemori et al., “Predictors of recurrence in breast cancer patients with a pathologic complete response after neoadjuvant chemotherapy,” British Journal of Cancer, vol. 103, no. 3, pp. 297–302, 2010.
[16]  A. D. Baildam, “Oncoplastic surgery for breast cancer,” British Journal of Surgery, vol. 95, no. 1, pp. 4–5, 2008.
[17]  A. E. Giuliano, K. K. Hunt, K. V. Ballman et al., “Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial,” Journal of the American Medical Association, vol. 305, no. 6, pp. 569–575, 2011.
[18]  J. C. Boughey, T. L. Hoskin, A. C. Degnim et al., “Contralateral prophylactic mastectomy is associated with a survival advantage in high-risk women with a personal history of breast cancer,” Annals of Surgical Oncology, vol. 17, no. 10, pp. 2702–2709, 2010.
[19]  B. A. Pockaj, N. Wasif, A. C. Dueck et al., “Metastasectomy and surgical resection of the primary tumor in patients with stage IV breast cancer: time for a second look?” Annals of Surgical Oncology, vol. 17, no. 9, pp. 2419–2426, 2010.
[20]  O. Pagani, E. Senkus, W. Wood et al., “International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured?” Journal of the National Cancer Institute, vol. 102, no. 7, pp. 456–463, 2010.
[21]  H. Kennecke, R. Yerushalmi, R. Woods et al., “Metastatic behavior of breast cancer subtypes,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3271–3277, 2010.
[22]  G. H. De Bock, H. Putter, J. Bonnema, J. A. Van Der Hage, H. Bartelink, and C. J. Van De Velde, “The impact of loco-regional recurrences on metastatic progression in early-stage breast cancer: a multistate model,” Breast Cancer Research and Treatment, vol. 117, no. 2, pp. 401–408, 2009.
[23]  E. Botteri, V. Bagnardi, N. Rotmensz et al., “Analysis of local regional recurrences in breast cancer after conservative surgery,” Annals of Oncology, vol. 21, no. 4, pp. 723–728, 2009.
[24]  M. R. Kell, C. Dunne, J. P. Burke, and M. Morrow, “Effect of margin status on local recurrence after breast conservation and radiation therapy for ductal carcinoma in situ,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1615–1620, 2009.
[25]  S. T. Ward, B. G. Jones, and A. J. Jewkes, “A two-millimetre free margin from invasive tumour minimises residual disease in breast-conserving surgery,” International Journal of Clinical Practice, vol. 64, no. 12, pp. 1675–1680, 2010.
[26]  S. J. Anderson, I. Wapnir, J. J. Dignam et al., “Prognosis after ipsilateral breast tumor recurrence and locoregional recurrences in patients treated by breast-conserving therapy in five national surgical adjuvant breast and bowel project protocols of node-negative breast cancer,” Journal of Clinical Oncology, vol. 27, no. 15, pp. 2466–2473, 2009.
[27]  B. Biggers, S. Knox, M. Grant et al., “Circulating tumor cells in patients undergoing surgery for primary breast cancer: preliminary results of a pilot study,” Annals of Surgical Oncology, vol. 16, no. 4, pp. 969–971, 2009.
[28]  X.-C. Hu, W. T. Y. Loo, and L. W. C. Chow, “Surgery-related shedding of breast cancer cells as determined by RT-PCR assay,” Journal of Surgical Oncology, vol. 82, no. 4, pp. 228–232, 2003.
[29]  X. Y. An, H. Egami, N. Hayashi, Y. Kurusu, J. I. Yamashita, and M. Ogawa, “Clinical significance of circulating cancer cells in peripheral blood detected by reverse transcriptase-polymerase chain reaction in patients with breast cancer,” Tohoku Journal of Experimental Medicine, vol. 193, no. 2, pp. 153–162, 2001.
[30]  I. J. Bleiweiss, C. S. Nagi, and S. Jaffer, “Axillary sentinel lymph nodes can be falsely positive due to iatrogenic displacement and transport of benign epithelial cells in patients with breast carcinoma,” Journal of Clinical Oncology, vol. 24, no. 13, pp. 2013–2018, 2006.
[31]  N. M. Hansen, X. Ye, B. J. Grube et al., “Manipulation of the primary breast tumor and the incidence of sentinel node metastases from invasive breast cancer,” Archives of Surgery, vol. 139, no. 6, pp. 634–640, 2004.
[32]  B. A. Carter, R. A. Jensen, J. F. Simpson, and D. L. Page, “Benign transport of breast epithelium into axillary lymph nodes after biopsy,” American Journal of Clinical Pathology, vol. 113, no. 2, pp. 259–265, 2000.
[33]  M. Cristofanilli, G. T. Budd, M. J. Ellis et al., “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” New England Journal of Medicine, vol. 351, no. 8, pp. 781–791, 2004.
[34]  M. C. Miller, G. V. Doyle, and L. W. Terstappen, “Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer,” Journal of Oncology, vol. 2010, Article ID 617421, 8 pages, 2010.
[35]  O. Camara, A. Kavallaris, H. N?schel, M. Rengsberger, C. J?rke, and K. Pachmann, “Seeding of epithelial cells into circulation during surgery for breast cancer: the fate of malignant and benign mobilized cells,” World Journal of Surgical Oncology, vol. 4, article no. 67, 2006.
[36]  N. Sawabata, M. Okumura, T. Utsumi et al., “Circulating tumor cells in peripheral blood caused by surgical manipulation of non-small-cell lung cancer: pilot study using an immunocytology method,” General Thoracic and Cardiovascular Surgery, vol. 55, no. 5, pp. 189–192, 2007.
[37]  M. Yilmaz, G. Christofori, and F. Lehembre, “Distinct mechanisms of tumor invasion and metastasis,” Trends in Molecular Medicine, vol. 13, no. 12, pp. 535–541, 2007.
[38]  M. Mareel, M. J. Oliveira, and I. Madani, “Cancer invasion and metastasis: interacting ecosystems,” Virchows Archiv, vol. 454, no. 6, pp. 599–622, 2009.
[39]  W. W. Harless, “Cancer treatments transform cancer cell phenotype,” Cancer Cell International, vol. 11, article 1, 2011.
[40]  M. T. Sandri, L. Zorzino, M. C. Cassatella et al., “Changes in circulating tumor cell detection in patients with localized breast cancer before and after surgery,” Annals of Surgical Oncology, vol. 17, no. 6, pp. 1539–1545, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413