全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Consequences of Neutralization on the Proliferation and Cytoskeletal Organization of Chondrocytes on Chitosan-Based Matrices

DOI: 10.1155/2011/809743

Full-Text   Cite this paper   Add to My Lib

Abstract:

In tissue engineering strategies that seek to repair or regenerate native tissues, adhesion of cells to scaffolds or matrices is essential and has the potential to influence subsequent cellular events. Our focus in this paper is to better understand the impact of cellular seeding and adhesion in the context of cartilage tissue engineering. When scaffolds or surfaces are constructed from chitosan, the scaffolds must be first neutralized with sodium hydroxide and then washed copiously to render the surface, cell compatible. We seek to better understand the effect of surface pretreatment regimen on the cellular response to chitosan-based surfaces. In the present paper, sodium hydroxide concentration was varied between 0.1?M and 0.5?M and two different contacting times were studied: 10 minutes and 30 minutes. The different pretreatment conditions were noted to affect cell proliferation, morphology, and cytoskeletal distribution. An optimal set of experimental parameters were noted for improving cell growth on scaffolds. 1. Introduction The successful cellular colonization of scaffolds for use in tissue engineering applications often relies on an important first step: cell seeding, where cells in suspension adhere to scaffolds or matrices [1]. Poor or inadequate cell adhesion often yields low starting cell densities that can result in lower cellular yields upon completion of the in vitro cell culture step. While in general, cellular adhesion is a critical step in most tissue engineering strategies that seek to repair or regenerate the native tissue, our focus in this study is to better understand the impact of cellular seeding and adhesion in the context of cartilage tissue engineering. Scaffold parameters that impact tissue engineering strategies include chemical [2–5] and mechanical properties [6], geometry (2D [7] versus 3D [7, 8]; micro [9–11] versus nano [12]), environment, and morphology (pore size and pore shape) [6, 13]. Most materials that are used in the preparation of scaffolds for use in tissue engineering applications are either derived from natural origin (collagen, gelatin, chitosan, and agarose) or prepared from synthetic polymers (poly(lactic acid) (PLA), poly(L-lactic acid)-polyglycolic acid (PLLA-PGA), poly(ε-caprolactone) (PCL), etc.) [14–16]. Cellular response to biomaterial interfaces is often directed by surface characteristics. For example, cell adhesion has been shown to be influenced by substrate chemistry, which partly modulates the pattern, conformation, and extent of protein adsorption on biomaterial surfaces [2, 3, 17, 18]. For

References

[1]  N. Faucheux, R. Schweiss, K. Lützow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials, vol. 25, no. 14, pp. 2721–2730, 2004.
[2]  A. J. García, “Interfaces to control cell-biomaterial adhesive interactions,” Advances in Polymer Science, vol. 203, no. 1, pp. 171–190, 2006.
[3]  B. G. Keselowsky, D. M. Collard, and A. J. García, “Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion,” Journal of Biomedical Materials Research, Part A, vol. 66, no. 2, pp. 247–259, 2003.
[4]  K. Webb, V. Hlady, and P. A. Tresco, “Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization,” Journal of Biomedical Materials Research, vol. 41, no. 3, pp. 422–430, 1998.
[5]  K. Webb, V. Hlady, and P. A. Tresco, “Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces,” Journal of Biomedical Materials Research, vol. 49, no. 3, pp. 362–368, 2000.
[6]  Y. Huang, M. Siewe, and S. V. Madihally, “Effect of spatial architecture on cellular colonization,” Biotechnology and Bioengineering, vol. 93, no. 1, pp. 64–75, 2006.
[7]  V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nature Reviews Molecular Cell Biology, vol. 7, no. 4, pp. 265–275, 2006.
[8]  P. Friedl and E. B. Br?cker, “The biology of cell locomotion within three-dimensional extracellular matrix,” Cellular and Molecular Life Sciences, vol. 57, no. 1, pp. 41–64, 2000.
[9]  C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science, vol. 276, no. 5317, pp. 1425–1428, 1997.
[10]  D. W. Hamilton, M. O. Riehle, R. Rappuoli, W. Monaghan, R. Barbucci, and A. S. G. Curtis, “The response of primary articular chondrocytes to micrometric surface topography and sulphated hyaluronic acid-based matrices,” Cell Biology International, vol. 29, no. 8, pp. 605–615, 2005.
[11]  K. I. T. Kevin Parker, A. M. Y. Lepre Brock, C. Brangwynne et al., “Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces,” FASEB Journal, vol. 16, no. 10, pp. 1195–1204, 2002.
[12]  M. J. Dalby, M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. G. Curtis, “Fibroblast response to a controlled nanoenvironment produced by colloidal lithography,” Journal of Biomedical Materials Research, Part A, vol. 69, no. 2, pp. 314–322, 2004.
[13]  C. G. Spiteri, R. M. Pilliar, and R. A. Kandel, “Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro,” Journal of Biomedical Materials Research, Part A, vol. 78, no. 4, pp. 676–683, 2006.
[14]  J. Jagur-Grodzinski, “Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies,” Polymers for Advanced Technologies, vol. 17, no. 6, pp. 395–418, 2006.
[15]  P. A. Gunatillake, R. Adhikari, and N. Gadegaard, “Biodegradable synthetic polymers for tissue engineering,” European Cells and Materials, vol. 5, pp. 1–16, 2003.
[16]  X. Liu and P. X. Ma, “Polymeric scaffolds for bone tissue engineering,” Annals of Biomedical Engineering, vol. 32, no. 3, pp. 477–486, 2004.
[17]  C. D. McFarland, C. H. Thomas, C. DeFilippis, J. G. Steele, and K. E. Healy, “Protein adsorption and cell attachment to patterned surfaces,” Journal of Biomedical Materials Research, vol. 49, no. 2, pp. 200–210, 2000.
[18]  C. D. Tidwell, S. I. Ertel, B. D. Ratner, B. J. Tarasevich, S. Atre, and D. L. Allara, “Endothelial cell growth and protein adsorption on terminally functionalized, self-assembled monolayers of alkanethiolates on gold,” Langmuir, vol. 13, no. 13, pp. 3404–3413, 1997.
[19]  K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer, vol. 36, no. 4, pp. 837–842, 1995.
[20]  A. G. Mikos, A. J. Thorsen, L. A. Czerwonka et al., “Preparation and characterization of poly(l-lactic acid) foams,” Polymer, vol. 35, no. 5, pp. 1068–1077, 1994.
[21]  L. D. Harris, B. S. Kim, and D. J. Mooney, “Open pore biodegradable matrices formed with gas foaming,” Journal of Biomedical Materials Research, vol. 42, no. 3, pp. 396–402, 1998.
[22]  S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques,” Tissue Engineering, vol. 8, no. 1, pp. 1–11, 2002.
[23]  N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, “Electrospun chitosan-based nanofibers and their cellular compatibility,” Biomaterials, vol. 26, no. 31, pp. 6176–6184, 2005.
[24]  E. D. Boland, T. A. Telemeco, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, “Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering,” Journal of Biomedical Materials Research, Part B, vol. 71, no. 1, pp. 144–152, 2004.
[25]  K. H. Carpizo, M. J. Saran, W. Huang, et al., “Pretreatment of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide enhances osteoblastic differentiation and slows proliferation of mouse preosteoblast cells,” Plastic and Reconstructive Surgery, vol. 121, no. 2, pp. 424–434, 2008.
[26]  M. Cimini, D. R. Boughner, J. A. Ronald, D. E. Johnston, and K. A. Rogers, “Dermal fibroblasts cultured on small intestinal submucosa: conditions for the formation of a neotissue,” Journal of Biomedical Materials Research, Part A, vol. 75, no. 4, pp. 895–906, 2005.
[27]  D. Guan, Z. Chen, C. Huang, and Y. Lin, “Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds,” Applied Surface Science, vol. 255, no. 2, pp. 324–327, 2008.
[28]  H. H. Seung, H. K. Yun, S. P. Min et al., “Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo,” Journal of Biomedical Materials Research, Part A, vol. 87, no. 4, pp. 850–861, 2008.
[29]  S.-H. Hsu, T.-B. Huang, S.-C. Chuang, I.-J. Tsai, and D. C. Chen, “Ultrasound preexposure improves endothelial cell binding and retention on biomaterial surfaces,” Journal of Biomedical Materials Research, Part B, vol. 76, no. 1, pp. 85–92, 2006.
[30]  E. Karamuk, J. Mayer, E. Wintermantel, and T. Akaike, “Partially degradable film/fabric composites: textile scaffolds for liver cell culture,” Artificial Organs, vol. 23, no. 9, pp. 881–884, 1999.
[31]  H.-R. Lin and Y.-J. Yen, “Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies,” Journal of Biomedical Materials Research, Part B, vol. 71, no. 1, pp. 52–65, 2004.
[32]  K. M. Woo, J. Seo, R. Zhang, and P. X. Ma, “Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds,” Biomaterials, vol. 28, no. 16, pp. 2622–2630, 2007.
[33]  V. F. Sechriest, Y. J. Miao, C. Niyibizi et al., “GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis,” Journal of Biomedical Materials Research, vol. 49, no. 4, pp. 534–541, 2000.
[34]  V. Hamilton, Y. Yuan, D. A. Rigney et al., “Bone cell attachment and growth on well-characterized chitosan films,” Polymer International, vol. 56, no. 5, pp. 641–647, 2007.
[35]  V. Hamilton, Y. Yuan, D. A. Rigney et al., “Characterization of chitosan films and effects on fibroblast cell attachment and proliferation,” Journal of Materials Science, vol. 17, no. 12, pp. 1373–1381, 2006.
[36]  A. Lahiji, A. Sohrabi, D. S. Hungerford, and C. G. Frondoza, “Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes,” Journal of Biomedical Materials Research, vol. 51, no. 4, pp. 586–595, 2000.
[37]  E. L. Jong, E. K. Seoung, C. K. Ick et al., “Effects of a chitosan scaffold containing TGF-β1 encapsulated chitosan microspheres on in vitro chondrocyte culture,” Artificial Organs, vol. 28, no. 9, pp. 829–839, 2004.
[38]  W. Xia, W. Liu, L. Cui et al., “Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds,” Journal of Biomedical Materials Research, Part B, vol. 71, no. 2, pp. 373–380, 2004.
[39]  A. G. Karakecili, T. T. Demirtas, C. Satriano, M. Gümüsderelioglu, and G. Marletta, “Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDS)-immobilized chitosan in serum-containing/serum-free cultures,” Journal of Bioscience and Bioengineering, vol. 104, no. 1, pp. 69–77, 2007.
[40]  P. M. López-Pérez, A. P. Marques, R. M. P. D. Silva, I. Pashkuleva, and R. L. Reis, “Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells,” Journal of Materials Chemistry, vol. 17, no. 38, pp. 4064–4071, 2007.
[41]  S. S. Silva, S. M. Luna, M. E. Gomes et al., “Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies,” Macromolecular Bioscience, vol. 8, no. 6, pp. 568–576, 2008.
[42]  P. Sangsanoh and P. Supaphol, “Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions,” Biomacromolecules, vol. 7, no. 10, pp. 2710–2714, 2006.
[43]  M. G. N. Campos, C. R. F. Grosso, G. Cárdenas, and L. H. I. Mei, “Effects of neutralization process on preparation and characterization of chitosan membranes for wound dressing,” Macromolecular Symposia, vol. 229, pp. 253–257, 2005.
[44]  K. Tuzlakoglu, C. M. Alves, J. F. Mano, and R. L. Reis, “Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications,” Macromolecular Bioscience, vol. 4, no. 8, pp. 811–819, 2004.
[45]  A. Subramanian and H. Y. Lin, “Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation,” Journal of Biomedical Materials Research, Part A, vol. 75, no. 3, pp. 742–753, 2005.
[46]  A. Subramanian, D. Vu, G. F. Larsen, and H. Y. Lin, “Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering,” Journal of Biomaterials Science, Polymer Edition, vol. 16, no. 7, pp. 861–873, 2005.
[47]  C. Nicolini, V. Trefiletti, and B. Cavazza, “Quaternary and quinternary structures of native chromatin DNA in liver nuclei: differential scanning calorimetry,” Science, vol. 219, no. 4581, pp. 176–178, 1983.
[48]  S. Demarger-Andre and A. Domard, “Chitosan carboxylic acid salts in solution and in the solid state,” Carbohydrate Polymers, vol. 23, no. 3, pp. 211–219, 1994.
[49]  Y. Dong, C. Xu, J. Wang, M. Wang, Y. Wu, and Y. Ruan, “Determination of degree of substitution for N-acylated chitosan using IR spectra,” Science in China, Series B, vol. 44, no. 2, pp. 216–224, 2001.
[50]  T. O. Collier, C. R. Jenney, K. M. DeFife, and J. M. Anderson, “Protein adsorption on chemically modified surfaces,” Biomedical Sciences Instrumentation, vol. 33, pp. 178–183, 1997.
[51]  J. G. Steele, B. A. Dalton, G. Johnson, and P. A. Underwood, “Polystyrene chemistry affects vitronectin activity: an explanation for cell attachment to tissue culture polystyrene but not to unmodified polystyrene,” Journal of Biomedical Materials Research, vol. 27, no. 7, pp. 927–940, 1993.
[52]  J. G. Steele, G. Johnson, and P. A. Underwood, “Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene,” Journal of Biomedical Materials Research, vol. 26, no. 7, pp. 861–884, 1992.
[53]  R. M. Wyre and S. Downes, “The role of protein adsorption on chondrocyte adhesion to a heterocyclic methacrylate polymer system,” Biomaterials, vol. 23, no. 2, pp. 357–364, 2002.
[54]  J. Wei, M. Yoshinari, S. Takemoto et al., “Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability,” Journal of Biomedical Materials Research, Part B, vol. 81, no. 1, pp. 66–75, 2007.
[55]  J. Kisiday, M. Jin, B. Kurz et al., “Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9996–10001, 2002.
[56]  K. Burridge and M. Chrzanowska-Wodnicka, “Focal adhesions, contractility, and signaling,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 463–519, 1996.
[57]  L. Luo, T. Cruz, and C. McCulloch, “Interleukin 1-induced calcium signalling in chondrocytes requires focal adhesions,” Biochemical Journal, vol. 324, no. 2, pp. 653–658, 1997.
[58]  B. Gr??ner-Schreiber, M. Herzog, J. Hedderich, A. Dück, M. Hannig, and M. Griepentrog, “Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study,” Clinical Oral Implants Research, vol. 17, no. 6, pp. 736–745, 2006.
[59]  E. Langelier, R. Suetterlin, C. D. Hoemann, U. Aebi, and M. D. Buschmann, “The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments,” Journal of Histochemistry and Cytochemistry, vol. 48, no. 10, pp. 1307–1320, 2000.
[60]  M. B. Benjamin, C. W. Archer, and J. R. Ralphs, “Cytoskeleton of cartilage cells,” Microscopy Research and Technique, vol. 28, no. 5, pp. 372–377, 1994.
[61]  L. A. Durrant, C. W. Archer, M. Benjamin, and J. R. Ralphs, “Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture,” Journal of Anatomy, vol. 194, no. 3, pp. 343–353, 1999.
[62]  J. Y. Lim, J. C. Hansen, C. A. Siedlecki, J. Runt, and H. J. Donahue, “Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces,” Journal of the Royal Society Interface, vol. 2, no. 2, pp. 97–108, 2005.
[63]  B. Beekman, N. Verzijl, R. A. Bank, K. von der Mark, and J. M. TeKoppele, “Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell-matrix interaction,” Experimental Cell Research, vol. 237, no. 1, pp. 135–141, 1997.
[64]  E. J. Blain, S. J. Gilbert, A. J. Hayes, and V. C. Duance, “Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis,” Matrix Biology, vol. 25, no. 7, pp. 398–408, 2006.
[65]  O. Esue, A. A. Carson, Y. Tseng, and D. Wirtz, “A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin,” Journal of Biological Chemistry, vol. 281, no. 41, pp. 30393–30399, 2006.
[66]  D. E. Ingber, “Tensegrity-based mechanosensing from macro to micro,” Progress in Biophysics and Molecular Biology, vol. 97, no. 2-3, pp. 163–179, 2008.
[67]  D. E. Ingber, “Tensegrity I. Cell structure and hierarchical systems biology,” Journal of Cell Science, vol. 116, no. 7, pp. 1157–1173, 2003.
[68]  D. E. Ingber, “Cellular mechanotransduction: putting all the pieces together again,” FASEB Journal, vol. 20, no. 7, pp. 811–827, 2006.
[69]  J. W. Park and K.-H. Choi, “Acid-Base equilibria and related properties of chitosan,” ulletin of Korean Chemical Society, vol. 4, no. 2, pp. 68–72, 1983.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413