全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Temperature Change on Geometric Structure of Isolated Mixing Regions in Stirred Vessel

DOI: 10.1155/2012/287051

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present work experimentally investigated the effect of temperature change on the geometric structure of isolated mixing regions (IMRs) in a stirred vessel by the decolorization of fluorescent green dye by acid-base neutralization. A four-bladed Rushton turbine was installed in an unbaffled stirred vessel filled with glycerin as a working fluid. The temperature of working fluid was changed in a stepwise manner from 30°C to a certain fixed value by changing the temperature of the water jacket that the vessel was equipped with. The step temperature change can dramatically reduce the elimination time of IMRs, as compared with a steady temperature operation. During the transient process from an initial state to disappearance of IMR, the IMR showed interesting three-dimensional geometrical changes, that are, simple torus with single filament, simple torus without filaments, a combination of crescent shape and circular tori, and doubly entangled torus. 1. Introduction Stirred vessels are frequently used to homogenize different substances, conduct chemical reactions, and enhance mass transfer between different phases. These vessels are versatile and they are available in a wide variety of sizes and impeller configurations for use in industrial processes. Although turbulent flow is efficient for mixing, laminar mixing is required in some cases such as for high-viscosity fluids and shear-sensitive materials. Koiranen et al. [1] proposed specific principles for effective mixing of highly viscous liquids or shear-sensitive materials in laminar flow mixing regimes. In these regimes, global mixing is inefficient due to the existence of isolated mixing regions (IMRs). Makino et al. [2] characterized IMRs in a stirred vessel using radial flow impellers and found that IMRs consisted of various Kolmogorov-Arnold-Moser (KAM) tori. Ohmura et al. [3] reported the existence of KAM tori as island structures in a phase-locked orbit that has a rational relation of the time period between the primary and secondary circulation flows. Noui-Mehidi et al. [4] found that the mechanism of IMR disappearance could be described by the formation of a period-doubling locus in the physical space when using a six-blade Rushton turbine impeller. Hashimoto et al. [5] successfully visualized a three-dimensional structure of thin filaments spirally wrapping around the core of toroidal region. They formulated and estimated the relation between mixing conditions and filament numbers and/or wire turns. The elimination of IMR at low Reynolds numbers has also been studied extensively. Lamberto et

References

[1]  T. Koiranen, A. Kraslawski, and L. Nystr?m, “Knowledge-based system for the preliminary design of mixing equipment,” Industrial and Engineering Chemistry Research, vol. 34, no. 9, pp. 3059–3067, 1995.
[2]  T. Makino, N. Ohmura, and K. Kataoka, “Observation of isolated mixing regions in a stirred vessel,” Journal of Chemical Engineering of Japan, vol. 34, no. 5, pp. 574–578, 2001.
[3]  N. Ohmura, T. Makino, T. Kaise, and K. Kataoka, “Transition of organized flow structure in a stirred vessel at low Reynolds numbers,” Journal of Chemical Engineering of Japan, vol. 36, no. 12, pp. 1458–1463, 2003.
[4]  M. N. Noui-Mehidi, N. Ohmura, J. Wu, B. Van Nguyen, N. Nishioka, and T. Takigawa, “Characterisation of isolated mixing regions in a stirred vessel,” International Journal of Chemical Reactor Engineering, vol. 6, article no. A25, 2008.
[5]  S. Hashimoto, H. Ito, and Y. Inoue, “Experimental study on geometric structure of isolated mixing region in impeller agitated vessel,” Chemical Engineering Science, vol. 64, no. 24, pp. 5173–5181, 2009.
[6]  D. J. Lamberto, F. J. Muzzio, P. D. Swanson, and A. L. Tonkovich, “Using time-dependent RPM to enhance mixing in stirred vessels,” Chemical Engineering Science, vol. 51, no. 5, pp. 733–741, 1996.
[7]  W. G. Yao, H. Sato, K. Takahashi, and K. Koyama, “Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds,” Chemical Engineering Science, vol. 53, no. 17, pp. 3031–3040, 1998.
[8]  K. Takahashi and M. Motoda, “Chaotic mixing created by object inserted in a vessel agitated by an impeller,” Chemical Engineering Research and Design, vol. 87, no. 4, pp. 386–390, 2009.
[9]  N. Nishioka, Y. Tago, T. Takigawa, N. M. Noui-Mehidi, J. Wu, and N. Ohmura, “Particle migration in a stirred vessel at low reynolds numbers,” in Proceedings of the 8th Italian Conference on Chemical and Process Engineering (AIDIC Conference Series), vol. 8, pp. 243–247, Milano, Italy, 2007.
[10]  Alatengtuya, N. Nishioka, T. Horie, M. N. Noui-Mehidi, and N. Ohmura, “Effect of particle motion in isolated mixing regions on mixing in stirred vessel,” Journal of Chemical Engineering of Japan, vol. 42, no. 7, pp. 459–463, 2009.
[11]  Y. Inoue, H. Ito, Y. Nakata, and S. Hashimoto, “Theoretical analysis of isolated mixing regions in stirred vessels,” Kagaku Kogaku Ronbunshu, vol. 36, no. 1, pp. 1–16, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133