全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ultrathin Sicopion Composite Cation-Exchange Membranes: Characteristics and Electrodialytic Performance following a Conditioning Procedure

DOI: 10.1155/2012/932723

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work was to investigate the properties of Sicopion membranes: an ultrathin (≈20?μm) composite cation-exchange membrane (CEM) made from sulphonated poly(ether-ether-ketone) (SPEEK) containing different levels of sulphonic-functionalized silica particles (SFSPs). Sicopion membranes were conditioned according to the French Normalization Association procedure, consisting in a series of acid and alkaline washes, and their electrodialytic characteristics were compared to an existent commercial food-grade membrane (CMX-SB). Electrical conductivity of Sicopion membranes was higher than that of CMX-SB membranes (9.92 versus 6.98?mS/cm), as well as their water content (34.0 versus 27.6%). As the SFSP level was reduced, the ion-exchange capacity (IEC) of Sicopion membranes increased. Concerning their electrodialytic performances, Sicopion membranes presented a lower demineralization rate than CMX-SB membranes (35.9 versus 45.5%), due to an OH? leakage through the pores created by dislodging the SFSP particles during the conditioning procedure. 1. Introduction Sicopion is a novel type of membranes made of a composite material combining sulphonic-functionalized silica particles (SFSP) and sulphonated poly(ether-ether-ketone) (SPEEK). In this composite material, the functionalization of silica particles is accomplished by covalently grafting sulphonic acid groups [1]. In the case of SPEEK, concentrated H2SO4 is used to sulphonate, also by covalent bonding, an aromatic chain of poly(ether-ether-ketone) (PEEK) [1, 2]. Once the organic and the inorganic phases prepared, they are mixed in specific proportions according to the application requirements. The resulting composite material is then prepared in a membrane form. Among the factors affecting the membrane properties there is the sulphonation degree of the components and the type and amount of SFSP used. A PEEK should be partially sulphonated to decrease its hydrophobicity and produce an ion-exchanging material, but high degrees of sulphonation are to be avoided, since the polymer would then become water soluble, which is the case of 100% SPEEK [1, 2]. The amount of SFSPs, as well as their size, determines the formation of a continuous hydrophilic phase and the mechanical properties of the material. A high content of inorganic particles (i.e., SFSP) produces higher membrane hydration and water retention capacity but, in contrast, yields a brittle membrane with lower tear resistance [1]. These materials impart to the membrane a highly functional ion-exchanging structure without inert fillers. At the

References

[1]  M. St-Arnaud and P. Bebin, “Ion exchange composite material based on proton conductive silica particles dispersed in a polymer matrix,” Patent, WO 03/083985 A2, 2003.
[2]  W. Richard Bowen, T. A. Doneva, and H. B. Yin, “Polysulfone—Sulfonated poly(ether ether) ketone blend membranes: systematic synthesis and characterisation,” Journal of Membrane Science, vol. 181, no. 2, pp. 253–263, 2001.
[3]  V. Baglio, A. S. Aricò, V. Antonucci et al., “An NMR spectroscopic study of water and methanol transport properties in DMFC composite membranes: influence on the electrochemical behaviour,” Journal of Power Sources, vol. 163, no. 1, pp. 52–55, 2006.
[4]  E. Ayala-Bribiesca, G. Pourcelly, and L. Bazinet, “Nature identification and morphology characterization of cation-exchange membrane fouling during conventional electrodialysis,” Journal of Colloid and Interface Science, vol. 300, no. 2, pp. 663–672, 2006.
[5]  Association Fran?aise de Normalisation, Norme fran?aise homologuée pour les membranes polymères échangeuses d'ions NF X 45-200. France, 1995.
[6]  E. R?s?nen, M. Nystr?m, J. Sahlstein, and O. Tossavainen, “Purification and regeneration of diluted caustic and acidic washing solutions by membrane filtration,” Desalination, vol. 149, no. 1–3, pp. 185–190, 2002.
[7]  E. Ayala-Bribiesca, M. Araya-Farias, G. Pourcelly, and L. Bazinet, “Effect of concentrate solution pH and mineral composition of a whey protein diluate solution on membrane fouling formation during conventional electrodialysis,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 790–801, 2006.
[8]  D. A. Cowan and J. H. Brown, “Effect of turbulence on limiting current in electrodialysis cells,” Industrial & Engineering Chemistry, vol. 51, no. 12, pp. 1445–1448, 1959.
[9]  L. Bazinet, F. Lamarche, R. Labrecque, and D. Ippersiel, “Effect of number of bipolar membranes and temperature on the performance of bipolar membrane electroacidification,” Journal of Agricultural and Food Chemistry, vol. 45, no. 10, pp. 3788–3794, 1997.
[10]  L. Bazinet, D. Ippersiel, D. Montpetit, B. Mahdavi, J. Amiot, and F. Lamarche, “Effect of membrane permselectivity on the fouling of cationic membranes during skim milk electroacidification,” Journal of Membrane Science, vol. 174, no. 1, pp. 97–110, 2000.
[11]  R. Jiang, H. R. Kunz, and J. M. Fenton, “Composite silica/Nafion membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells,” Journal of Membrane Science, vol. 272, no. 1-2, pp. 116–124, 2006.
[12]  L. Bazinet, D. Montpetit, D. Ippersiel, J. Amiot, and F. Lamarche, “Identification of skim milk electroacidification fouling: a microscopic approach,” Journal of Colloid and Interface Science, vol. 237, no. 1, pp. 62–69, 2001.
[13]  L. Bazinet, D. Montpetit, D. Ippersiel, B. Mahdavi, J. Amiot, and F. Lamarche, “Neutralization of hydroxide generated during skim milk electroacidification and its effect on bipolar and cationic membrane integrity,” Journal of Membrane Science, vol. 216, no. 1-2, pp. 229–239, 2003.
[14]  D. Seeliger, C. Hartnig, and E. Spohr, “Aqueous pore structure and proton dynamics in solvated Nafion membranes,” Electrochimica Acta, vol. 50, no. 21, pp. 4234–4240, 2005.
[15]  S. Roualdes, N. Kourda, J. Durand, and G. Pourcelly, “Plasma-grafted PVDF polymers as anion exchange membranes for the electrotransport of Cr(VI),” Desalination, vol. 146, no. 1–3, pp. 273–278, 2002.
[16]  P. Piela and P. K. Wrona, “Some anion-transport properties of Nafion 117 from fuel cell hydrogen peroxide generation data,” Journal of Power Sources, vol. 158, no. 2, pp. 1262–1269, 2006.
[17]  F. L. T. Shee, P. Angers, and L. Bazinet, “Relationship between electrical conductivity and demineralization rate during electroacidification of cheddar cheese whey,” Journal of Membrane Science, vol. 262, no. 1-2, pp. 100–106, 2005.
[18]  E. Vera, J. Sandeaux, F. Persin, G. Pourcelly, M. Dornier, and J. Ruales, “Deacidification of clarified tropical fruit juices by electrodialysis—part I. Influence of operating conditions on the process performances,” Journal of Food Engineering, vol. 78, no. 4, pp. 1427–1438, 2007.
[19]  L. Bazinet and L. Firdaous, “Membrane processes and devices for separation of bioactive peptides,” Recent Patents on Biotechnology, vol. 3, no. 1, pp. 61–72, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133