全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of Applied Stress on Environment-Induced Cracking of Aluminum Alloy 5052-H3 in 0.5?M NaCl Solution

DOI: 10.1155/2012/894875

Full-Text   Cite this paper   Add to My Lib

Abstract:

The environment-induced cracking (EIC) of aluminum alloy 5052-H3 was investigated as a function of applied stress and orientation (Longitudinal rolling direction—Transverse: LT and Transverse—Longitudinal rolling direction: TL) in 0.5?M sodium chloride solution (NaCl) using a constant load method. The applied stress dependence of the three parameters (time to failure; , steady-state elongation rate, , and transition time at which a linear increase in elongation starts to deviate, ) obtained from the corrosion elongation curve showed that these relationships were divided into three regions, the stress-dominated region, the EIC- dominated region, and the corrosion-dominated region. Aluminum alloy 5052-H3 with both orientations showed the same EIC behavior. The value of / in the EIC-dominated region was almost constant with independent of applied stress and orientation. The fracture mode was transgranular for 5052-H3 with both orientations in the EIC-dominated region. The relationships between log and log for 5052-H3 in the EIC-dominated region became a good straight line with a slope of ?2 independent of orientation. 1. Introduction The environment-induced cracking (EIC) behavior of metallic alloys in chloride and other corrosive solutions has been extensively investigated using various EIC methods [1–7], where EIC is composed of stress corrosion cracking (SCC) subjected to anodic reactions such as film formation and dissolution and hydrogen embrittlement (HE) to cathodic reactions such as hydrogen evolution. A number of theories have been developed for cracking mechanisms of aluminum alloys in chloride environments [5–9]. Suresh et al. have concluded that EIC behavior in high-strength 7075 aluminum alloy under fatigue loading is mostly governed by three mechanisms, namely, the embrittling effect by the hydrogen products of the electrochemical reactions at the crack tip, the role of microstructure and slip mode and crack closure arising from environmental and microstructural elements [8, 9]. It has been reported that the behavior of the metallic alloy can be characterized using a constant load method [10]. The method can produce a corrosion elongation curve which can be used to obtain three parameters, namely, time to failure ( ), steady-state elongation rate ( ), and transition time at which a linear increase in elongation starts to deviate ( ). These parameters were confirmed to be used in analyzing the failure behavior and to predict time to failure ( ) [11, 12]. The objectives of this research work are (1) to investigate the effect of applied stress

References

[1]  M. O. Speidel, “Stress corrosion cracking of aluminum alloys,” Metallurgical Transactions A, vol. 6, no. 4, pp. 631–651, 1975.
[2]  M. R. Bayoumi, “The mechanics and mechanisms of fracture in stress corrosion cracking of aluminium alloys,” Engineering Fracture Mechanics, vol. 54, no. 6, pp. 879–889, 1996.
[3]  R. J. Gest and A. R. Troiano, “Stress corrosion and hydrogen embrittlement in an aluminum alloy,” Corrosion, vol. 30, no. 8, pp. 274–279, 1974.
[4]  J. R. Pickens, J. R. Gordon, and J. A. S. Green, “Effect of loading mode on the stress-corrosion cracking of aluminum alloy 5083,” Metallurgical transactions. A, vol. 14, no. 5, pp. 925–930, 1983.
[5]  J. G. Rinker, M. Marek, and T. H. Sanders, “Microstructure, toughness and stress corrosion cracking behavior of aluminum alloy 2020,” Materials Science and Engineering, vol. 64, no. 2, pp. 203–221, 1984.
[6]  W. Y. CHU, Y. B. WANG, and C. M. HSIAO, “Research of hydrogen induced cracking and stress corrosion cracking in an aluminum alloy,” Corrosion, vol. 38, no. 11, pp. 561–570, 1982.
[7]  K. Sieradzki and R. C. Newman, “Stress-corrosion cracking,” Journal of Physics and Chemistry of Solids, vol. 48, no. 11, pp. 1101–1113, 1987.
[8]  S. Suresh, A. K. Vasudevan, and P. E. Bretz, “Mechanisms of slow fatigue crack growth in high strength aluminum alloys: role of microstructure and environment,” Metallurgical Transactions. A, vol. 15, no. 2, pp. 369–379, 1984.
[9]  A. K. Vasudevan and S. Suresh, “Influence of corrosion deposits on near-threshold fatigue crack growth behavior in 2xxx and 7xxx series aluminum alloys,” Metallurgical Transactions. A, vol. 13, no. 12, pp. 2271–2280, 1982.
[10]  R. Nishimura and K. Kudo, “Stress corrosion cracking of AlSl 304 and AlSl 316 austenitic stainless steels in HCl and H2SO4 solutions—prediction of time-to-failure and criterion for assessment of SCC susceptibility,” Corrosion, vol. 45, no. 4, pp. 308–316, 1989.
[11]  R. Nishimura, “The effect of chloride ions on stress corrosion cracking of type 304 and type 316 austenitic stainless steels in sulfuric acid solution,” Corrosion Science, vol. 34, no. 11, pp. 1859–1868, 1993.
[12]  R. Nishimura, “The effect of potential on stress corrosion cracking of type 316 and type 310 austenitic stainless steels,” Corrosion Science, vol. 34, no. 9, pp. 1463–1473, 1993.
[13]  O. M. Alyousif and R. Nishimura, “The effect of test temperature on SCC behavior of austenitic stainless steels in boiling saturated magnesium chloride solution,” Corrosion Science, vol. 48, no. 12, pp. 4283–4293, 2006.
[14]  O. M. Alyousif and R. Nishimura, “The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions,” Corrosion Science, vol. 49, no. 7, pp. 3040–3051, 2007.
[15]  O. M. Alyousif and R. Nishimura, “Stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions,” Corrosion Science, vol. 50, no. 8, pp. 2353–2359, 2008.
[16]  O. M. Alyousif and R. Nishimura, “On the stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions: effect of applied stress,” Corrosion Science, vol. 50, no. 10, pp. 2919–2926, 2008.
[17]  R. Nishimura, J. Shirono, and A. Jonokuchi, “Hydrogen-induced cracking of pure titanium in sulphuric acid and hydrochloric acid solutions using constant load method,” Corrosion Science, vol. 50, no. 9, pp. 2691–2697, 2008.
[18]  R. H. Jones, Ed., Stress-Corrosion Cracking, ASM International, Materials Park, Ohio, USA, 1992.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133