全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合纹理特征的SVM海冰分类方法研究

DOI: 10.3969/ji.ssn.0253-4193.2018.11.015

Keywords: 海冰分类 纹理特征 灰度共生矩阵 支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

海冰分类是遥感监测领域中的重要应用之一,海冰分类的准确性对于评估海冰冰情、保证航海安全和开辟北极航道具有重要的意义。针对海冰分类问题,本文选用Sentinel-1遥感数据,结合纹理特征分析,提出了一种改进的SAR海冰分类方法。该方法选用灰度共生矩阵提取特征值,通过实验得到适宜用于海冰分类的多特征组合,在此基础上利用支持向量机开展SAR海冰类型的分类研究。实验结果表明,该方法可以实现对海冰SAR图像中一年冰、多年冰和海水3种类型识别,与传统的海冰分类方法神经网络和最大似然法相比较,使用SVM分类方法,结合纹理特征开展海冰类型监测是可行的,同时也表明多特征组合有利于提高SAR图像的分类精度,从而验证了本方法的有效性,为海冰分类提供了一种新思路

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133