全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  -1 

LA RISPECIFICAZIONE DEL TRASMETTITORE E DEL RECETTORE è UNA NUOVA FORMA DI PLASTICITà DEL SISTEMA NERVOSO NELL’ADULTO | Istituto Lombardo - Accademia di Scienze e Lettere - Incontri di Studio

DOI: https://doi.org/10.4081/incontri.2018.358

Keywords: 37 PDF: 19

Full-Text   Cite this paper   Add to My Lib

Abstract:

After some words on the scientific role of Professor Paolo Mantegazza atthe University of Milan (4, 5, 6), I briefly illustrate some studies related to the occurrence of neurotransmitter and receptor re-specification in the adult animals. The greatdiscoveries of the early twentieth century on neuronal communication have established that the majority of communication between nerve cells occurs through a special structure, the synapse, allowing the one-way transfer of information between twocells through the release of a neurotransmitter from the presynaptic cell and its recognition by receptors localized in the postsynaptic cell. According to H. Dale axiom (9) each neuron could be identified on the basis of the neurotransmitter released and theinnervated cell by the type of receptors expressed; then neurons could be classified asexcitatory if they release acetylcholine, glutamate or other transmitters, or inhibitory ifthey release GABA or glycine. However, in recent years many studies have shown that, especially during development, a neuron could release and co-release several neuro-transmitters, sometimes even simultaneously, changing its classification from excitatory to inhibitory and vice versa(7). This researches opened a new field of study onsynaptic plasticity: the neurotransmitter and receptor re-specification. Our group, together with Prof. Mantegazza, tried to “force” it through experiments of denervation and heterologous re-innervation in the autonomic nervous system and at the neuromuscular junction. In a first series of experiments we studied the regenerative capabilities of the peripheral nervous system in three experimental models: a) re-innervation of the denervated superior cervical ganglion (SCG) (14, 15, 22) by cholinergicefferent vagal fibers, b) re-innervation of peripheral effectors smooth muscles (nicti-tating membrane) by the cholinergic preganglionic fibers; c) re-innervation in an in vivo transplant model of peripheral organs by the SCG. In these researches we haveestablished: 1) that a sympathetic ganglion could be re-innervated by vagal fibersforming normal ganglionic synapses, but with a strong reshaping, in vivo, of the cen-tral neural circuits so that sympathetic stimuli occurred through a vagal excitation; 2) preganglionic cholinergic fibers innervate the smooth muscle of the nictitating mem-brane releasing catecholamines instead of acetylcholine; 3) that in an in vivo model ofSCG transplant together with iris or adrenal medulla fragments, the SCG was able todistinguish between organs that required a postsynaptic

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413