全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

QoS Supported IPTV Service Architecture over Hybrid-Tree-Based Explicit Routed Multicast Network

DOI: 10.1155/2012/263470

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the rapid advance in multimedia streaming and multicast transport technology, current IP multicast protocols, especially PIM-SM, become the major channel delivery mechanism for IPTV system over Internet. The goals for IPTV service are to provide two-way interactive services for viewers to select popular program channel with high quality for watching during fast channel surfing period. However, existing IP multicast protocol cannot meet above QoS requirements for IPTV applications between media server and subscribers. Therefore, we propose a cooperative scheme of hybrid-tree based on explicit routed multicast, called as HT-ERM to combine the advantages of shared tree and source tree for QoS-supported IPTV service. To increase network utilization, the constrained shortest path first (CSPF) routing algorithm is designed for construction of hybrid tree to deliver the high-quality video stream over watching channel and standard quality over surfing channel. Furthermore, the Resource Reservation Protocol- Traffic Engineering (RSVP-TE) is used as signaling mechanism to set up QoS path for multicast channel admission control. Our simulation results demonstrated that the proposed HT-ERM scheme outperforms other multicast QoS-based delivery scheme in terms of channel switching delay, resource utilization, and blocking ratio for IPTV service. 1. Introduction As the rapid growth of broadband network applications with streaming transport over Internet, the Internet Protocol Television (IPTV) system has been widely deployed to provide multimedia service anywhere at any time. This is because IPTV enables digital service convergence of communications, computing, and media content over IP network with desired QoS guarantee [1]. From the perspective of the quality of experience (QoE), IPTV system operates as the same with broadcasting TV service, which would deliver the watching and surfing programs over different channels. However, the most difference is that IPTV works in a two-way interactive communications between service providers and subscribers. We need to consider the effective channel and delivery control problem to achieve video streaming with desired quality over Internet. To efficiently satisfy multiple viewers’ own quality requirements, IP multicast is considered a promising solution for IPTV application. Nevertheless, quality of service (QoS) support to IPTV system still poses challenging issues for multicast channel delivery and resource utilization through IP networks. The QoS-supported IPTV multicast service architecture is to deploy an efficient

References

[1]  Y. Xiao, X. Du, J. Zhang, F. Hu, and S. Guizani, “Internet protocol television (IPTV): the killer application for the next-generation internet,” IEEE Communications Magazine, vol. 45, no. 11, pp. 126–134, 2007.
[2]  W. Sun, X. Luo, K. Lin, and Y. Guan, “Performance analysis of a finite duration multichannel delivery method in IPTV,” IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 419–429, 2008.
[3]  D. E. Smith, “IP TV bandwidth demand: multicast and channel surfing,” in Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM '07), pp. 2546–2550, Anchorage, Alaska, USA, May 2007.
[4]  S. Chen, K. Nahrstedt, and Y. Shavitt, “QoS-aware multicast routing protocol,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 12, pp. 2580–2592, 2000.
[5]  H. Holbrook and B. Cain, “RFC 4607: Source-Specific Multicast for IP,” Internet Engineering Task Force, August 2006.
[6]  B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification (Revised),” RFC 4601, August 2006.
[7]  C. C. Wen, C. S. Wu, and M. T. Yang, “Hybrid tree based explicit routed multicast for QoS supported IPTV service,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '09), December 2009.
[8]  M. Bag-Mohammadi, N. Yazdani, and S. Samadian-Barzoki, “On the efficiency of explicit multicast routing protocols,” in Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC '05), pp. 679–685, June 2005.
[9]  S. Yasukawa, M. Uga, H. Kojima, and K. Sugisono, “Extended RSVP-TE for Multicast LSP Tunnels,” IETF draft, June 2003.
[10]  C. Sasaki, A. Tagami, T. Hasegawa, and S. Ano, “Rapid channel zapping for IPTV broadcasting with additional multicast stream,” in Proceedings of the IEEE International Conference on Communications (ICC '08), pp. 1760–1766, May 2008.
[11]  Y. Kim, J. K. Park, H. J. Choi et al., “Reducing IPTV channel zapping time based on viewer's surfing behavior and preference,” in Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB '08), April 2008.
[12]  H. Joo, H. Song, D. B. Lee, and I. Lee, “An effective IPTV channel control algorithm considering channel zapping time and network utilization,” IEEE Transactions on Broadcasting, vol. 54, no. 2, pp. 208–216, 2008.
[13]  Cisco Technical Support Module, Load Splitting IP Multicast Traffic over ECMP, Cisco Systems, 2007.
[14]  B. Chinoy and H.-W. Braun, “The national science foundation network,” Technical Report GA-A210029, SDSC, 1992.
[15]  K. L. Calvert, E. W. Zegura, and S. Bhattacharjee, “How to model an internetwork,” in Proceedings of the 1996 15th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '96), pp. 594–602, March 1996.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133