全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Seamless Broadcasting Scheme with Live Video Support

DOI: 10.1155/2012/373459

Full-Text   Cite this paper   Add to My Lib

Abstract:

Broadcasting schemes, such as the fast broadcasting and harmonic broadcasting schemes, significantly reduce the bandwidth requirement of video-on-demand services. In the real world, some history events are very hot. For example, every year in March, thousands of people connect to Internet to watch the live show of Oscar Night. Such actions easily cause the networks contested. However, the schemes mentioned previously cannot alleviate the problem because they do not support live broadcasting. In this paper, we analyze the requirements for transferring live videos. Based on the requirements, a time skewing approach is proposed to enable the broadcasting schemes to support live broadcasting. However, the improved schemes require extra bandwidth for live broadcasting once the length of live shows exceeds the default. Accordingly, we proposed a scalable binomial broadcasting scheme to transfer live videos using constant bandwidth by increasing clients’ waiting time. When the scheme finds that the length of a video exceeds the default, it doubles the length of to-be-played segments and then its required bandwidth is constant. 1. Introduction With the growth of broadband networks, the video-on-demand (VOD) [1] becomes realistic. Many studies start investigating VOD. One of important areas is to explore how to distribute the top ten or twenty so-called hot videos more efficiently. Broadcasting is one of the promising solutions. It transfers each video according to a fixed schedule and consumes constant bandwidth regardless of the presence or absence of requests for the video. That is, the system’s bandwidth requirement is independent of the number of users watching a given video. A basic broadcasting scheme is the batch scheme [2], which postpones the users’ requests for a certain amount of time and serves these requests in batch so that its bandwidth consumption is reduced. However, the batch scheme still requires quite large bandwidth for a hot video. For example, given a video of 120 minutes, if the maximum clients’ waiting time equals 10 minutes, the required bandwidth is 12 , where is the video playout rate. Many broadcasting schemes were proposed to further reduce the bandwidth requirement by using a set-top box (STB) at the client end. The schemes include the fast broadcasting (FB) [3, 4], pagoda broadcasting (PB) [5], new pagoda broadcasting (NPB) [5], recursive-frequency splitting (RFS) [6], staircase broadcasting (SB) [7], and harmonic broadcasting (HB) [8, 9] schemes, which divide a video into multiple segments and distribute them through several

References

[1]  T. D. Little and D. Venkatesh, “Prospects for interactive video-on-demand,” IEEE Multimedia, vol. 1, no. 3, pp. 14–24, 1994.
[2]  T. C. Chiueh and C. H. Lu, “Periodic broadcasting approach to video-on-demand service,” in Integration Issues in Large Commercial Media Delivery Systems, vol. 2615 of Proceedings of SPIE, pp. 162–169, October 1995.
[3]  L. S. Juhn and L. M. Tseng, “Fast data broadcasting and receiving scheme for popular video service,” IEEE Transactions on Broadcasting, vol. 44, no. 1, pp. 100–105, 1998.
[4]  L. S. Juhn and L. M. Tseng, “Adaptive fast data broadcasting scheme for video-on-demand service,” IEEE Transactions on Broadcasting, vol. 44, no. 2, pp. 182–185, 1998.
[5]  J.- F. Paris, S. W. Carter, and D. E. Long, “A hybrid broadcasting protocol for video-on-demand,” in Proceedings of the Multimedia Computing and Networking Conference, pp. 317–326, San Jose, Calif, USA, January 1999.
[6]  Y. C. Tseng, M. H. Yang, and C. H. Chang, “A recursive frequency-splitting scheme for broadcasting hot videos in VOD service,” IEEE Transactions on Communications, vol. 50, no. 8, pp. 1348–1355, 2002.
[7]  L. S. Juhn and L. M. Tseng, “Staircase data broadcasting and receiving scheme for hot video service,” IEEE Transactions on Consumer Electronics, vol. 43, no. 4, pp. 1110–1117, 1997.
[8]  L. S. Juhn and L. M. Tseng, “Harmonic broadcasting for video-on-demand service,” IEEE Transactions on Broadcasting, vol. 43, no. 3, pp. 268–271, 1997.
[9]  Z. Y. Yang, L. S. Juhn, and L. M. Tseng, “On optimal broadcasting scheme for popular video service,” IEEE Transactions on Broadcasting, vol. 45, no. 3, pp. 318–324, 1998.
[10]  S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand service using pyramid broadcasting,” Multimedia Systems, vol. 4, no. 4, pp. 197–208, 1996.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413