全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Background Traffic-Based Retransmission Algorithm for Multimedia Streaming Transfer over Concurrent Multipaths

DOI: 10.1155/2012/789579

Full-Text   Cite this paper   Add to My Lib

Abstract:

The content-rich multimedia streaming will be the most attractive services in the next-generation networks. With function of distribute data across multipath end-to-end paths based on SCTP's multihoming feature, concurrent multipath transfer SCTP (CMT-SCTP) has been regarded as the most promising technology for the efficient multimedia streaming transmission. However, the current researches on CMT-SCTP mainly focus on the algorithms related to the data delivery performance while they seldom consider the background traffic factors. Actually, background traffic of realistic network environments has an important impact on the performance of CMT-SCTP. In this paper, we firstly investigate the effect of background traffic on the performance of CMT-SCTP based on a close realistic simulation topology with reasonable background traffic in NS2, and then based on the localness nature of background flow, a further improved retransmission algorithm, named RTX_CSI, is proposed to reach more benefits in terms of average throughput and achieve high users' experience of quality for multimedia streaming services. 1. Introduction The content-rich multimedia streaming, such as video-on-demand (VoD) [1, 2] and Internet Protocol Television (IPTV) will be the most attractive services in the next-generation networks. Most researches have proved the Stream Control Transmission Protocol (SCTP) will be the most promising technology for the large bandwidth consumption of multimedia streaming services [2–4]. Particularly in the future wireless heterogeneous network that the terminals will be equipped with multiple network interfaces and attached multiple heterogeneous access capability at the same time, the SCTP can provide the effective transmission for multimedia streaming services and balance the overhead among multiple access networks. The SCTP [5] has been proposed and standardized by the Internet Engineering Task Force (IETF) in order to effectively utilize the multihoming environment and support real-time signaling transmission over IP networks, since SS7 has been the only bearer for the signaling traffic in telecommunication networks [6] for many years. SCTP has some important features including: multi-homing. The destination nodes can be reached under the several IP addresses (multi-homed). In SCTP, both sides of the association provide multiple IP addresses combined with a single SCTP port number [7]. Multistreaming which means the parallel transmission of messages over the same association between sender and the receiver. The stream independently carries fragmented

References

[1]  C. Xu, G. M. Muntean, E. Fallon, and A. Hanley, “Distributed storage-assisted data-driven overlay network for P2P VoD services,” IEEE Transactions on Broadcasting, vol. 55, no. 1, pp. 1–10, 2009.
[2]  Z. Liu, C. Wu, S. Zhao, and B. Li, “UUSee: large-scale operational on-demand streaming with random network coding,” in Proceedings of the IEEE Conference on Computer Communications (INFOCOM '10), San Diego, Calif, USA, March 2010.
[3]  C. Xu, E. Fallon, Q. Yuansong, Z. Lujie, and M. Gabriel-Miro, “Performance evaluation of multimedia content distribution over multi-homed wireless networks,” IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 204–215, 2011.
[4]  C. Xu, E. Fallon, M. Gabriel-Miro, X. Li, and A. Hanley, “Performance evaluation of distributing real-time video over concurrent multipath,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '09), Budapest, Hungary, April 2009.
[5]  K. Zheng, M. Liu, Z. C. Li, and G. Xu, “SHOP: an integrated scheme for SCTP handover optimization in multihomed environments,” in Proceedings of the IEEE Global Telecommunications Conference, pp. 1–5, New Orleans, La, USA, December 2008.
[6]  R. Stewart, Q. Xie, K. Morneault, et al., “Stream control transmission protocol,” IETF RFC 2960, October 2000.
[7]  P. Natarajan, F. Baker, P. D. Amer, and J. T. Leighton, “SCTP: what, why, and how,” IEEE Internet Computing, vol. 13, no. 5, pp. 81–85, 2009.
[8]  Y. Wang, R. Injong, and H. Sangtae, “Augment SCTP multi-streaming with pluggable scheduling,” in Proceedings of the 30th IEEE International Conference on Computer Communications Workshops, pp. 810–815, Shanghai, China, April 2011.
[9]  J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths,” IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 951–964, 2006.
[10]  T. Stegel, J. Sterle, U. Sedlar, J. Be?ter, and A. Kos, “SCTP multihoming provisioning in converged IP-based multimedia environment,” Computer Communications, vol. 33, no. 14, pp. 1725–1735, 2010.
[11]  C. M. Huang and M. S. Lin, “Multimedia streaming using partially reliable concurrent multipath transfer for multihomed networks,” IET Communications, vol. 5, no. 5, pp. 587–597, 2011.
[12]  J. R. Iyengar, P. D. Amer, and R. Stewart, “Retransmission policies for concurrent multipath transfer using SCTP multihoming,” in Proceedings of the 12th IEEE International Conference on Networks (ICON '04), pp. 713–719, Singapore, November 2004.
[13]  J. R. Iyengar, P. D. Amer, and R. Stewart, “Performance implications of a bounded receive buffer in concurrent multipath transfer,” Tech. Rep., CIS Department, University of Delaware.
[14]  J. Liao, J. Wang, and X. Zhu, “cmpSCTP: an extension of SCTP to support concurrent multi-path transfer,” in Proceedings of the IEEE International Conference on Communications, pp. 5762–5766, Beijing, China, 2008.
[15]  ?. Budzisz, R. Ferrús, F. Casadevall, and P. Amer, “On concurrent multipath transfer in SCTP-based handover scenarios,” in Proceedings of the IEEE International Conference on Communications, pp. 1–6, Dresden, Germany, June 2009.
[16]  J. M. Liu, H. X. Zou, J. X. Dou, and Y. Gao, “Reducing receive buffer blocking in concurrent multipath transfer,” in Proceedings of the IEEE International Conference on Circuits and Systems for Communications (ICCSC '08), Shanghai, China, May 2008.
[17]  P. Barford and M. Crovella, “Generating representative web workloads for network and server performance evaluation,” in Proceedings of ACM SIGMETRICS, pp. 151–160, Madison,Wis, USA, June 1998.
[18]  S. Floyd and V. Paxson, “Difficulties in simulating the Internet,” IEEE/ACM Transactions on Networking, vol. 9, no. 4, pp. 392–403, 2001.
[19]  S. Floyd and E. Kohler, “Internet research needs better models,” ACM Computer Communications Review, vol. 33, no. 1, pp. 29–34, 2003.
[20]  S. Ha, L. Le, I. Rhee, and L. Xu, “Impact of background traffic on performance of high-speed TCP variant protocols,” Computer Networks, vol. 51, no. 7, pp. 1748–1762, 2007.
[21]  The Network Simulator—ns-2, http://www.isi.edu/nsnam/ns/.
[22]  M. Fomenkov, K. Keys, D. Moore, and K. claffy, “Longitudinal study of Internet traffic in 1998–2003,” in Proceedings of the Winter International Symposium on Information and Communication Technologies (WISICT '04), pp. 1–6, Cancun, Mexico, January 2004.
[23]  http://www.isi.edu/nsnam/archive/ns-users/webarch/2001/msg05051.html.
[24]  A. Caro, P. Amer, and J. Iyengar, “Retransmission policies with transport layer multihoming,” in Proceedings of the 11th IEEE International Conference on Networks, pp. 255–260, Sydney, Australia, November 2003.
[25]  P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath transfer using transport layer multi-homing: performance under network failures,” in Proceedings of the Military Communications Conference (MILCOM '06), pp. 1–7, Washington, DC, USA, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413