全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils

Keywords: ROS, superoxide anion, hydrogen peroxide, luminol-amplified chemiluminescence, neutrophils

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reactive oxygen species (ROS) are produced by numerous biological systems and by several phagocytes such as neutrophils and macrophages. ROS include mostly superoxide anion, hydrogen peroxide, singlet oxygen and hydroxyl radical, which are involved in a variety of biological processes such as immunity, inflammation, apoptosis and cell signaling. Thus, there is a need for a sensitive and reliable method to measure ROS. The luminol-amplified chemiluminescence technique is widely used to measure ROS production by neutrophils; however, it is unclear which ROS species are detected by this technique. In this study, we show that Xanthine/Xanthine oxidase (XXO), a known superoxide-producing system, stimulated a luminol-amplified chemiluminescence in the absence of horseradish peroxidase (HRPO), while the presence of HRPO enhanced the response. Both reactions were inhibited by superoxide dismutase (SOD), but not by catalase, confirming that superoxide anion, and not hydrogen peroxide, is the species oxidizing luminol to produce chemiluminescence. Glucose/Glucose oxidase (GGO), a known hydrogen peroxide-producing system, did not induce luminol-amplified chemiluminescence in the absence of HRPO; however, addition of HRPO resulted in a chemiluminescence response, which was inhibited by catalase, but not by SOD. Myeloperoxidase (MPO), isolated from human neutrophils, was also able to enhance the superoxide- and hydrogen peroxide-dependent luminol-amplified chemiluminescence. The production of ROS by stimulated human neutrophils was detected by luminol-amplified chemiluminescence, which was only partially inhibited by SOD and catalase. Interestingly, adding HRPO to stimulated neutrophils increased the luminol-amplified chemiluminescence, which was strongly inhibited by SOD, but not by catalase. These results show that (a) luminol-amplified chemiluminescence is able to detect superoxide anion in the absence of peroxidases, but not hydrogen peroxide; (b) in the presence of peroxidases, luminol-amplified chemiluminescence is able to detect both superoxide anion and hydrogen peroxide; and (c) luminol-amplified chemiluminescence detects mainly superoxide anion produced by neutrophils, especially in the presence of HRPO

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413